CADA: CyManII Attack-Defense Annex

Matthew Jablonski

George Mason University CyManII Dr. Duminda Wijesekera George Mason University CyManll Dr. Gabriela Ciocarlie

University of Texas at San Antonio CyManII

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0009046

Agenda

- Project goals
- CADA data models and analysis
- Risk scenario: Network attacks and incidence response
- Closing remarks

CADA Goals

<u>SN-3</u>	DEVELOP THE SECURITY ASPECTS OF OPERATIONAL AND OTHER LIFE CYCLE CONCEPTS
<u>SN-3.1</u>	Define a representative set of scenarios to identify all required protection capabilities and security measures that correspond to anticipated operational and other life cycle concepts.
SN-3.2	Identify the security-relevant interaction between users and the system.

Stakeholder Needs (SN-3) from [NIST 800-160 Vol. 1]

- Characterize security throughout the SDLC
- Visualize security risks within system context as it evolves
- Develop behavioral models
- Demonstrate impacts on control
- Analyze behaviors using formal methods
- Identify design tradeoff costs
- Open-Source CADA

Risk Analysis with CADA

CADA:

- Behavioral data models
- Security risk analysis
- Define realistic attack and response scenarios
- Core analytical engines:
 - AGREE [AGREE Github]
 - Safety Annex [Stewart et. al]

CADA Data Modeling and Analysis In AGREE

NOTE: we include the above triangle at the top of the next four slides

May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure.

CADA AADL Data Models

Data models for attackers and defenders

• [Rochetto & Tippenhauer]

Category	Name	A/D	Туре	Possible Values
	[Off/Def]_Knowledge_Int	AD	Integer	[0-100]
	Physical [Off/Def] Knowledge Int	AD	Integer	[0-100]
	Network [Off/Def] Knowledge Int	AD	Integer	[0-100]
	Software [Off/Def] Knowledge Int	AD	Integer	[0-100]
Knowledge	Component_Knowledge_Int	AD	Integer	[0-100]
g-	Protocol Component Knowledge Int	AD	Integer	[0-100]
	Source_Code_Component_Knowledge_Int	AD	Integer	[0-100]
	Credentials_Component_Knowledge_Enum	AD	enum	none, user, administrator, SYSTEM_access, remote_desktop_users, root, any
	Distance_Resource_Enum	AD	enum	none, far, near, physicalaccess, any
Decession	Manpower_Resource_Enum	AD	enum	low, medium, high
Resource	[Off/Def] Tools Resource Enum	AD	enum	basic, intermediate, advanced
	Financial_Resource_Int	AD	Integer	[0-1000000]
	Effort Resource Enum	AD	enum	low, medium, high
	Off Aim Psych Enum	A	enum	knowledge, manipulation, disrupt, damage
	Def_Aim_Psych_Enum	D	enum	none, confidentiality, integrity, availability, all
	[Off/Def] Physical Sec Aim Psych Enum	AD	enum	none, confidentiality, integrity, availability, all
Psychology	[Off/Def]_Virtual_Sec_Aim_Psych_Enum	AD	enum	none, confidentiality, integrity, availability, all
l sysnelogy	Periodicity_Psych_Enum	AD	enum	once, anytime, continuous
	Determination_Psych_Enum	AD	enum	first_attempt, several_attempts, untiring
	Honesty Psych Enum	А	enum	malicious, benign
	Camouflage Psych Enum	AD	enum	visible, stealthy, invisible
	Off_Strategy_Psych_Enum	AD	enum	random, brute_force, structured
	Def_Strategy_Psych_Enum	D	enum	random, monitor, investigate, evict

May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure.

May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure.

CADA AGREE Data Models

May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure.

CYMANI

Refined AGREE Named Constants

May contain trade secret

Optionally refine the CADA AGREE Data Models using named constants with actual values

- Standards
- Models
- Domain experts
- Best practice
- etc.

CYMÁNII

Refinements specific to the system or organization

Attacker	Defender		
Nation StateInsider ThreatPenetration Tester	 Incidence Response Team Security Engineering Physical Security 		
Attack Techniques	Defense Techniques		
• [MITRE ATT&CK®] • [MITRE CAPEC]	• [MITRE D3FEND™]		
Component Weaknesses	Component Security Controls		
• [MITRE CVE®] • [MITRE CWE™]	• [NIST 800-53 Rev. 5]		
Com Art	ponent ifacts		
MITRE D3 Digital Artif [MITRE D3	FEND™ act Ontology 3FEND]		

Refined AGREE Variable Objects

- Analysis should match perceived and actual real-world conditions
 - AGREE and Safety Annex
 - CADA Nodes
 - Domain expertise
 - Notional process flow

Toy Model Example System Risk Scenario 1

NOTE: enhanced from AGREE and Safety Annex toy models for CADA example

Risk Scenario 1 – Network Attack on System Input

May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure.

Attack Results

perty	Result
Verification for top_level.lmpl	4 Invalid, 9 Valid
🗸 🔝 Contract Guarantees	4 Invalid, 4 Valid
🔢 A_sub assume: A input range	Invalid (1s)
🔢 B_sub assume: B input range	Invalid (1s)
Subcomponent Assumptions	Invalid (1s)
🞺 mode is always positive	Valid (3s)
🔢 System output range	Invalid (1s)
ᢦ eq attacker : AD001_ATTACKER	Valid (1s)

A	В	С	D	Е
1 Step	0	1	2	3
2				
3 A_sub				
4 A_subASSUME.HIST	TRUE	TRUE	TRUE	FALSE
5 A_sub.CWE_77_Present	TRUE	TRUE	TRUE	TRUE
6 A_sub.CWE_200_Present	TRUE	TRUE	TRUE	TRUE
7 A_sub.Input	0	0	0	100
8 A_sub.Output	-1	-1	-1	200
9				
10 B_sub				
11 B_subASSUME.HIST	TRUE	TRUE	TRUE	FALSE
12 B_sub.Input	-1	-1	-1	200
13 B_sub.Output	0	0	0	35
14				
15 C_sub				
16 C_subASSUME.HIST	TRUE	TRUE	TRUE	TRUE
17 C_sub.Input1	-1	-1	-1	200
18 C_sub.Input2	0	0	0	35
19 C_sub.Output	0	0	0	235
20 C_sub.mode	0	8	9	10
21				
22				
23 A_CWE_77	FALSE	FALSE	TRUE	TRUE
24 A_CWE_77_Present	TRUE	TRUE	TRUE	TRUE
25 A_CWE_77_fail	FALSE	FALSE	FALSE	TRUE
26 A_CWE_77_ud	0	0	1	2
27 A_CWE_77_ud_sp	TRUE	FALSE	TRUE	TRUE
28 A_CWE_200	FALSE	TRUE	TRUE	TRUE
29 A_CWE_200_Present	TRUE	TRUE	TRUE	TRUE
30 A_CWE_200_ud	0	1	2	3
31 A_CWE_200_ud_sp	TRUE	TRUE	FALSE	TRUE
32 A_sub assume: A input range	TRUE	TRUE	TRUE	FALSE
33 B_sub assume: B input range	TRUE	TRUE	TRUE	FALSE
34 Input	0	0	0	100
35 Output	0		0	235

Response analysis: Exploit CWE-200 -> Exploit CWE-77 -> A's input changes which cascades through to system output to complete attack path

Risk Scenario 1 – Defensive Response 1

Top-level AGREE Annex:

Defense Results

Property	Result
🗸 🔝 Contract Guarantees	5 Invalid, 10 Valid
🔢 A_sub assume: A input range	Invalid (1s)
🔢 B_sub assume: B input range	Invalid (1s)
Subcomponent Assumptions	Invalid (1s)
🗸 mode is always positive	Valid (20s)
🔢 System output range	Invalid (1s)
System A response has not occurred	Invalid (2s)
🛷 System A defense not monitoring	Valid (2s)

Response analysis:

- Attack was still successful before defender could respond to bypassed network security controls
- Failure for "System A response has not occurred" check means that the defender did respond to attacker's events
- Success for "System A defense not monitoring" check means that the defender was always monitoring the system

Question: How can we prevent this traffic injection attack from occurring in the first place?

Risk Scenario 1 – Defensive Response 2

1

System A AGREE Annex:

eq defender : Defend_AGREE_Models::DD001_DEFENDER = Defender_AGREE_Types::D002_SECURITY_ENGINEERING;

--Defense of A

--Defender

--A Defender

eq defender_A : Defend_AGREE_Models::DD001_DEFENDER = defender ->
if (A_D3_MAN and A_D3_MAN_ud = 1) then
CADA_Nodes::Adapt_Defender_From_Technique(
 prev(defender_A, defender),
 Defend_Technique_AGREE_Types::D3_MAN_MESSAGE_AUTH_POST

else prev(defender_A, defender);

Defense Results

P

roperty	Result
🗸 🎺 Contract Guarantees	16 Valid
🞺 A_sub assume: A input range	Valid (46s)
🞺 B_sub assume: B input range	Valid (46s)
🛷 Subcomponent Assumptions	Valid (46s)
🗸 mode is always positive	Valid (44s)
🛷 System output range	Valid (46s)
🞺 System A response has not occurred	Valid (47s)
🗸 System A defense not monitoring	Valid (2s)

Response analysis:

- Traffic injection attack fails when Input data is signed and authenticated [©]
- Defender was monitoring throughout the scenario for signs of attack

Contributions

Introduced CyManII Attack-Defense Annex (CADA)

- Provides attack-defense data model
- Pentest and mitigate attacks early in SDLC
- Offers risk scenarios that span SDLC and evolve with system

CADA's generality

- Based on testing, CADA is extendable to all system models that leverage AGREE / Safety Annex
- Similar data models may be derived to support other modeling languages
- Intent to open source
- Email Contact: FIRST <dot> LAST <at> cymanii <dot> org

- **[AADL Overview]** Peter Feiler, SAE AADL V2: An Overview, Software Engineering Institute, 2010. https://cs.gmu.edu/~rpettit/files/lectures/AADLV2Overview-AADLUserDay-Feb_2010.pdf
- [AGREE Github] Loonwerks AGREE Repository, 2021. https://github.com/loonwerks/AGREE
- **[Delange]** Julien Delange, AADL In Practice, Reblochan Development Company, 2017. (book) [Rochetto & Tippenhauer] Rochetto and Tippenhauer, "On attacker models and profiles for cyber-physical systems," ESORICS 2016, Springer International Publishing, Switzerland.
- [Feiler & Gluch] Peter H. Feiler and David P. Gluch, Model-Based Engineering with AADL, Addison-Wesley, 2012. (book)
- **[Meng]** Baoluo Meng et al., VERDICT: A Language and Framework for Engineering Cyber Resilient and Safe System, in Systems, Vol.9 (1), p.18.
- [MITRE ATT&CK] MITRE, MITRE ATT&CK®, 2022. https://attack.mitre.org
- [MITRE CVE] MITRE, CVE® Program, 2022. https://cve.org
- [MITRE CWE] MITRE, Common Weakness Enumeration, 2022. https://cwe.mitre.org
- [MITRE D3FEND] Peter E. Kaloroumakis and Michael J. Smith, Toward a Knowledge Graphy of Cybersecurity Countermeasures, MITRE, Case 20-2034, 2021. <u>https://d3fend.mitre.org/resources/D3FEND.pdf</u>
- [NIST 800-53 Rev. 5]
- **[NIST 800-160 Vol. 1]** Ron Ross, Michael McEvilley, and Janet Carrier Oren, Systems Security Engineering, National Institute of Standards and Technology, NIST Special Publication 800-160 Volume 1, 2018.
- [OSATE] Welcome to OSATE, 2021. https://osate.org/
- **[Stewart et. al]** Danielle Stewart et. al, *Safety Annex for the Architecture Analysis and Design Language*, In ERTS 2020, 10th European Conference Embedded Real Time System.