Carnegie
Mellon
University

Software
Engineering
Institute

DEVSECOPS DAYS 2021 | WASHINGTON, DC

Commonality and Trends in SAST Results

December, 2021

Dr. Chris Near
CyberSagacity Ltd.
www.cybersagacity.io

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Did you know.........

There is less than 1% overlap amongst the defects
found by different AST tools

Trends In
SAST Results:

Kn ow YOU I « 80% of context-determined severe defects are
Tools

dismissed as unimportant by SASTs

« AST-found Java defects are 3 times more likely to
have high confidence than C/C++ defects

* Only 5.5% of AST defects are easy to exploit

« Only 6.5% of AST defects are rated high severity by
the AST

The Defect Database

10 SAST, 8 Open Source Projects

Project

Defect Density (Lines of
Code/Defect)

6.8

/.7 MLOC: Java/Javascript and
C/C++ code

Mature: Well-used, well-
maintained, dozens of release
cycles, half were > 25 years old

684,816 Defects

Defect Normalization
10,102 Defects, 20 SAST, 10 Languages

« Re-alignment based on consistent SAST Defect Rules
& accurate mapping to MITRE
CWE

e 11 commercial Tools

« Errors, laziness, keywords, effect-

26%

not-cause “expanded” coverage 359, Incorrectly
Mis-Aligned Described
« 9 open source tools: most do not Defects Defects

map to CWE
« 415 CWE items covered

e —
Defect Commonality

The Process

» Defect Normalization

* De-Duplication

 Common Sink-Source Location
« Parent-Child Relationships

« (Cause-Effect Relationships

Defect Commonality
The Result: 6,705 common out of 684,816

SAST Commonality

e Common Source-Sink: 10%

 Parent-Child: 3x increase in
commonality

e (Cause-Effect: 12% increase in 10% def

commonality \é\:l(t;;r?m

< 1% defects in
Results manually checked common

False Positive Trends

The Method

High No

Confidence

Java 1 71.4 2.3 16.5 8.2
Java 2 60 1.9 20.8 16.4
Java 3 45.1 4.5 43.4 2.3
Java 4 76.1 0.9 18.5 2.8
C/C++1 6.4 13.4 59.5 19.3
C/C++ 2 9.7 6.4 77.4 4.9
C/C++3 23 12.3 53.3 9.2
C/C++ 4 16.4 6.5 62.7 13.4
Java Total 61.4 2.6 25.8 7.8
C Total 21.7 12.1 54.6 9.5
All Total 46.8 6.1 36.4 8.4

Find relative probability
that defect type is true
positive

Rule Specific e.g.,
narrowness of rule

Analytic study: code
properties that affect
the math, path, and
data value validity

High confidence
—>50% true positive

No confidence —> 95%
false positive

False Positive Trends

Java/Javascript is accurate;C/C++ is not
« Java/JavaScript results

High Medium Low No

Confidence are much more
Java 1 71.4 2.3 16.5 8.2 accurate than C/C++
Java 2 i = 20.8 16.4 . Java results are either
Java 3 45.1 4.5 43.4 2.3 hlghly Confldent or not
Java 4 76.1 0.9 18.5 2.8 — no middle ground
CIC++ 1 6.4 13.4 59.5 19.3

« Considerable quantities
CIC++ 2 9.7 6.4 77.4 4.9 of no confidence results
are present

C/C++ 3 23 12.3 53.3 9.2

CIC++ 4 16.4 6.5 62.7 13.4 « One SAST had 20-25%
Java Total 61.4 2.6 25.8 7.8 no confidence rates

C Total 21.7 12.1 54.6 9.5 . Results verified with

All Total 46.8 6.1 36.4 8.4 historical defect trends

Ease of Exploit Trends

The Method
Easy Medium Hard No
Confidence

Java 1 0.8 35.6 54 8.2
Java 2 0.6 9.5 72.6 16.4
Java 3 14.3 14.2 64.6 2.3
Java 4 0.7 7.7 87.3 2.8
C/C++1 5.3 22.1 51.9 19.3
C/C++ 2 10.7 25 80 4.9
C/C++3 6.8 13.2 68.5 9.2
C/C++ 4 10 9.5 66.2 13.4
Java Total 4.7 17.7 67.5 7.8
C Total 6.9 13.1 68.3 9.5
All Total 5.5 16.1 67.8 8.4

Expand the CAPEC
attack associations with
CWEs

Direct vs indirect
attacks

Easy defects mapped
to easy-to-moderate
CAPEC

Half of defects have no
associated CAPEC

Verified with MITRE
CVE Database

Ease of Exploit Trends

SAST focuses on hard-to-exploit defects

Easy Medium Hard No
Confidence

Java 1 0.8 35.6 54 8.2
Java 2 0.6 9.5 72.6 16.4
Java 3 14.3 14.2 64.6 2.3
Java 4 0.7 7.7 87.3 2.8
C/C++1 5.3 22.1 51.9 19.3
C/C++ 2 10.7 25 80 4.9
C/C++3 6.8 13.2 68.5 9.2
C/C++ 4 10 9.5 66.2 13.4
Java Total 4.7 17.7 67.5 7.8
C Total 6.9 13.1 68.3 9.5
All Total 5.5 16.1 67.8 8.4

Few defects are easy
to exploit

Most defects are
difficult to exploit with
no associated common

attack patterns
(CAPEC)

One SAST was
considerably better
than all others in finding
easy-to-exploit defects

Severity of Consequence Trends

The Method
High No . Consequence list
Confidence .
extension

Java 1 0.2 40 50.3 8.2
Java 2 0.2 13.8 68.6 16.4 o Ana|ytic Study Of
Java 3 14.3 10.4 68.4 2.3 likelihnood of each
Java 4 0.3 5.9 89.4 2.8 conseqgquence for each
C/IC++ 1 5.1 20.1 54 19.3 defeCt
C/C++ 2 11.4 30.8 51.3 4.9 e« Breachable vs. non-
C/C++ 3 10.4 21.9 56.2 9.2 breachable defects
C/IC++ 4 13.4 5.0 67.2 13.4 . Veriﬁed with MITRE
Java Total 4.3 18.7 66.9 7.8 CVE Database
C Total 10.2 22.2 55.9 9.5
All Total 6.5 20.0 62.9 8.4

Severity of Consequence Trends

More severe C/C++ defects than Java defects

High Medium Low No
Confidence

Java 1 0.2 40 50.3 8.2
Java 2 0.2 13.8 68.6 16.4
Java 3 14.3 10.4 68.4 2.3
Java 4 0.3 5.9 89.4 2.8
C/C++1 5.1 20.1 54 19.3
C/C++ 2 11.4 30.8 51.3 4.9
C/C++3 10.4 21.9 56.2 9.2
C/C++ 4 13.4 5.0 67.2 13.4
Java Total 4.3 18.7 66.9 7.8
C Total 10.2 22.2 55.9 9.5
All Total 6.5 20.0 62.9 8.4

Most defects have low
probability of severe
consequences

C/C++ defects have
higher severity than
Java/Javascript

SASTs determined 35%
were severe

Big difference between
probability and
possibility of defect
presence

Trend Implications

Use lots of tools!
 To get adequate coverage, a project needs to use multiple
tools - both commercial and open source

* Increased tool usage adds to triage burden, especially for
C/C++ projects

« Ease of exploitation should be used as a prioritization
parameter

* Determine probability, not possibility

What is next?
AST Management Tools

« CyberSagacity has an application to determine these trends
for numerous ASTs

 We combine AST trend factors in a very-narrowing triage
process

 We will apply AST trend analysis to defect rules for tool
comparisons/trait analysis

« OPPORTUNITY: Trial use of our trends/triage application.
See www.cybersagacity.io for more information.

http://www.cybersagacity.io/

