

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Teaching Security Requirements
Engineering Using SQUARE

ABSTRACT: This paper details the validation of a comprehensive teaching
model for security requirements engineering which ensures that security is built
into the software from its inception. It centers on the employment of the
SQUARE method for secure software requirements engineering, which was de-
veloped at Carnegie Mellon University. The effectiveness of the SQUARE
method, its learning system and the initial results of using it in student case stud-
ies and in a practical, higher education classroom application are reported.

INTRODUCTION
The software that underpins critical infrastructure has to be secure. Yet, the prob-
lem is that historically it has been almost impossible to build secure software. As
a result, it is estimated that the exploitation of unsecured software costs the U.S.
economy an average of $60 billion dollars per year [1].

Notwithstanding the importance of financial loss however, the real concern lies
in the fact that the exploitation of a flaw in the software that underlies basic in-
frastructure services like power and communication could cause a significant
disaster [2]. The U.S. Critical Infrastructure Taskforce sums up that likelihood in
a single statement: “A digital disaster strikes some enterprise every day, [and]
infrastructure disruptions have cascading impacts, multiplying their cyber and
physical effects” [3, p. 6].

Because of the key importance of practitioners trained in secure software, The
National Strategy to Secure Cyberspace – Action/ Recommendation 2-14 has
mandated the Department of Homeland Security (DHS) to “promulgate best
practices and methodologies that promote integrity, security, and reliability in
software code development, including processes and procedures that diminish
the possibilities of erroneous code, malicious code, or trap doors that could be
introduced during development” [4, p. 35].

The global solution is to ensure that secure practice is being followed in all as-
pects of traditional lifecycle work. However in order to realize this goal, it is
essential to educate the professional community in the particular concepts and
methods of secure practice. Thus, it is important to develop targeted content and

Dan Shoemaker

Jeff Ingalsbe

Nancy Mead

February 2011

focused instruction that will both ensure the proper understanding of secure
software engineering practice, as well as reinforce its importance to software
engineering students.

It would seem to be a simple task to “identify the necessary workforce compe-
tencies, leverage sound practices, and guide curriculum development for educa-
tion and training relevant to software assurance” [5, p. xiv]. However, the prob-
lem is that security is not a mature field, and so the teaching of security topics is
done in a number of disjointed places within higher education. That includes
“software engineering, systems engineering, information systems security engi-
neering, safety, security, testing, information assurance, and project manage-
ment” [5, p. xiv].

Coherent knowledge about “software assurance processes and practices has yet
to be integrated into the body of knowledge of the contributing disciplines” [5, p.
xiv]. Too often, the result of this lack of integration is the graduation of a soft-
ware engineering student who develops buggy code with weak security
measures.

It is both impractical and impossible to simply drop the whole body of software
assurance knowledge into a traditional computer curriculum.

Therefore it seems important to adopt a focused strategy and a clear starting
point. One of the logical places to begin the integration process is in an area that
is vital to good security practice, but which is also well established and important
to general development. That is security requirements engineering.

THE IMPORTANCE OF REQUIREMENTS ENGINEERING
It is well recognized that requirements engineering is critical to the success of
any major development project [6, 7, 8, 9, 10]. Several authoritative studies have
shown that requirements engineering defects cost 10 to 200 times as much to
correct once fielded than if they were detected during requirements development
[11]. Other studies have shown that reworking requirements defects on most
software development projects costs 40 to 50 percent of total project effort, and
the percentage of defects originating during requirements engineering is estimat-
ed at more than 50 percent [12, 13]. The total percentage of project budget due to
requirements defects is 25 to 40 percent [12, 13].

Microsoft has indicated that versions of Windows developed after the Microsoft
Security “Push” have half the patch levels of earlier versions of Windows, an
obvious savings. Other recent industry data suggests that vulnerabilities cost up

1 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

to 100 times less to correct when they are found during security requirements
engineering, rather than after a system is operational. Thus the costs of poor se-
curity requirements show that even a small improvement in this area would pro-
vide a high value. By the time that an application is fielded and in its operational
environment, it is very difficult and expensive to significantly improve its securi-
ty.

According to an overwhelming number of studies [6, 7, 8, 11, 12, 14, 15, to
name a few], requirements problems are the number one cause of why projects

• are significantly over budget
• are significantly past schedule
• have significantly reduced scope
• deliver poor-quality applications
• are not significantly used once delivered
• are cancelled

THE PROBLEM WITH DEVELOPING SECURITY REQUIREMENTS
Security requirements are often identified during the system life cycle. However,
the requirements tend to be general mechanisms selected from standard lists,
such as password protection, firewalls, and virus detection tools. Often the secu-
rity requirements are developed independently of the rest of the requirements
engineering activity and hence are not integrated into the mainstream of the re-
quirements activities. As a result, security requirements that are specific to the
system and that provide for protection of essential services and assets are often
neglected.

In reviewing requirements documents, we typically find that security require-
ments, when they exist, are in a section by themselves and have been copied
from a generic set of security requirements. The requirements elicitation and
analysis that is needed to get a better set of security requirements seldom takes
place.

Much of the study of requirements engineering research and practice has ad-
dressed the capabilities that the system will provide. So a lot of attention is given
to the functionality of the system, from the user’s perspective, but little attention
is given to what the system should not do. For instance, in one discussion on
requirements prioritization for a specific large system, ease of use was assigned a
higher priority than security requirements.

2 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

A key problem is that, if security requirements are not effectively defined, the
resulting system cannot be effectively evaluated for success or failure prior to
implementation. Security requirements are often missing in the requirements
elicitation process and tend to be neglected subsequently. In addition to employ-
ing applicable software engineering techniques, the organization must under-
stand how to incorporate the techniques into its existing software development
processes [16]. That is the reason to embed security requirements instruction into
general courses in requirements elicitation and documentation. The question is,
“how best to do that”.

INTEGRATING SECURITY REQUIREMENTS INTO STANDARD
CURRICULA
A number of approaches can be used for integrating security requirements into
standard curricula. At the National Institute of Informatics in Japan, the Top SE
program [17] includes security requirements engineering as part of its curricu-
lum. The Top SE program includes discussion of misuse cases, TROPOS [18],
and goal-driven requirements engineering (KAOS) [19]. In addition there is a
case study based on the Common Criteria.

Case studies for security requirements engineering and security engineering in
general have been used at the International Institute of Information Technology,
Hyderabad [20] as a means of bridging the industry/university gap.

The CERT program at the Software Engineering Institute has, over three aca-
demic semesters, experimented with a novel technique to educate students on the
development of security requirements engineering for software systems [9].

This paper reports the findings of a couple of studies designed to validate a com-
prehensive teaching model for requirements definition, which ensures that secu-
rity is built into the software from its inception. It centers on the employment of
the SQUARE method of secure software requirements definition, which was
developed at Carnegie-Mellon University. The effectiveness of the SQUARE
method, its learning system and the initial results of using it in a practical, higher
education classroom application will be reported.

CASE STUDY ONE: INTEGRATING SECURITY REQUIREMENTS
INTO SWE CURRICULA
The motivation behind SQUARE is to see whether good requirements engineer-
ing processes can be adapted specifically to the problem of identifying security

3 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

requirements. If this can be done successfully, organizations will have the ability
to identify security requirements up front rather than as an afterthought. The
SQUARE process provides a means for eliciting, categorizing, and prioritizing
security requirements for information technology systems and applications. Note
that while there is nothing unique about the steps in the process, which have ex-
isted for many years in requirements engineering, we have seen relatively little
evidence of their application to security requirements, and even less on whether
such a process is successful for developing security requirements.

The existing methods fit nicely into the SQUARE process. These include misuse
and abuse cases, attack trees, and formal methods. Others, such as the Common
Criteria and SCR, suggest their own requirements engineering process. The
SQUARE methodology seeks to build security concepts into the early stages of
the development life cycle. The model may also be useful for documenting and
analyzing the security aspects of fielded systems and could be used to steer fu-
ture improvements and modifications to these systems. The process is best ap-
plied by the project’s requirements engineers and security experts in the context
of supportive executive management and stakeholders. We believe the process
works best when elicitation occurs after risk assessment (Step 4) has been done
and when security requirements are specified prior to critical architecture and
design decisions. Thus, critical business risks will be considered in the develop-
ment of the security requirements. The SQUARE steps are summarized below. A
detailed discussion of SQUARE and how to apply it can be found in [21].

1. Agree on Definitions, is needed as a prerequisite to security requirements
engineering. On a given project, team members will tend to have definitions
in mind, based on their prior experience, but those definitions will not nec-
essarily agree [22]. For example, to some government organizations, securi-
ty has to do with access based on security clearance levels, whereas to oth-
ers security may have to do with physical security or cyber security. It is
not necessary to invent definitions. Most likely, sources such as IEEE and
SWEBOK will provide a range of definitions to select from or tailor. A fo-
cus group meeting with the interested parties will most likely allow a con-
sistent set of definitions to be selected for the security requirements activity.

2. Identify Assets and Security Goals – this step should be done at the level
of the organization and is needed to develop the information system. This
provides a consistency check with the organization’s policies and opera-
tional security environment. Different stakeholders will likely have differ-
ent ideas about which assets are important and the associated security goals.
For example, a stakeholder in human resources may be concerned about
maintaining the confidentiality of personnel records, whereas a stakeholder
in a financial area may be concerned with ensuring that financial data is not

4 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

accessed or modified without authorization. It is important to have a repre-
sentative set of stakeholders, including those with operational expertise.
Once the assets and goals of the various stakeholders have been identified,
the goals will need to be prioritized. In the absence of consensus, an execu-
tive decision may be needed to prioritize these goals.

3. Develop Artifacts, is necessary to support all the subsequent activities. It is
often the case that organizations do not have a documented concept of op-
erations for a project, succinctly stated project goals, documented normal
usage and threat scenarios, misuse cases, and other documents needed to
support requirements definition. This means that either the entire require-
ments process is built on a foundation of sand, or a lot of time is spent
backtracking to try to obtain such documentation.

4. Perform Risk Assessment, requires an expert in risk assessment methods,
the support of the stakeholders, and the support of a requirements engineer.
There are a number of risk assessment methods available. A specific meth-
od can be recommended by the risk assessment expert, based on the needs
of the organization. The artifacts from Step 3 provide the input to the risk
assessment process. The outcomes of the risk assessment can help in identi-
fying the high-priority security exposures. Organizations that do not per-
form risk assessment typically do not have a logical approach to consider
organizational risk when identifying security requirements but tend to select
mechanisms, such as encryption, without really understanding the problem
that is being solved.

5. Select Elicitation Technique, becomes important when there are several
classes of stakeholders. A more formal elicitation technique, such as JAD
or structured interviews, can be effective in overcoming communication is-
sues when there are stakeholders with different cultural backgrounds. In
other cases, elicitation may simply consist of sitting down with a primary
stakeholder to try to understand that stakeholder’s security requirements
needs.

6. Elicit Security Requirements, is the actual elicitation process using the
selected technique. Most elicitation techniques provide detailed guidance
on how to perform elicitation. This builds on the artifacts that were devel-
oped in earlier steps, such as misuse and abuse cases, attack trees, threat
scenarios, etc.

7. Categorize Requirements, allows the requirements engineer to distinguish
among essential requirements, goals (desired requirements), and architec-
tural constraints that may be present. Requirements that are actually con-
straints typically occur when specific system architecture has been chosen
prior to the requirements process. This is good, as it allows assessment of
the risks associated with these constraints. This categorization also helps in
the prioritization activity that follows.

5 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

8. Prioritize Requirements, depends not only on the prior step, but may also
suggest performing a cost/benefit analysis in order to determine which se-
curity requirements have a high payoff relative to their cost.

9. Inspect Requirements, can be done at varying levels of formality, from
Fagan Inspections to peer reviews. Once inspection is complete, the organi-
zation should have an initial set of prioritized security requirements. It
should also understand which areas are incomplete and must be revisited
later. Finally, the organization should understand which areas are dependent
on specific architectures and implementations, and expect to revisit those as
well.

In student team projects over three separate semesters, thirteen students gained
hands-on experience through case applications involving real-world software
development projects. Using SQUARE [21], the students were able to under-
stand the importance of security requirements in software systems, as well as
improve the security foundations of the client projects with which they worked.

The students had a variety of backgrounds in our academic case study group.
Some had background in security and some had background in software engi-
neering or information technology. However, none of the students had experi-
ence in eliciting and documenting security requirements for software systems.
They also did not have experience working with software engineering methods,
such as SQUARE. The students had to develop two products to complete their
course requirements: (1) a document that was delivered to the client proposing
security requirements and supporting artifacts for the client’s project and (2) a
process document delivered only to the faculty advisor. This second document
discussed how the students went about applying each step in the process, wheth-
er it was easy or difficult to apply, and how it could be improved on. To that end,
the project provided them with a unique learning opportunity. The following
student feedback shows how the SQUARE experience helped them later on in
the workforce:

Student 1: “The real-world experience I gained from the SQUARE project gave
me the perfect set of information security project management and budgeting
skills that were invaluable in my job.”

Student 2: “While working on the SQUARE project with Dr. Mead, I took part
in several in-depth case studies involving organizations of varying size and repu-
tation. It was a wonderful opportunity to get a feel for how real companies de-
velop and manage large IT projects. This insight, along with the security focus of
SQUARE, allowed me to hit the ground running here with the security projects
we’re developing. Overall it was an extremely valuable experience and I’m
grateful that I was involved.”

6 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

CASE STUDY TWO: ASSESSMENT OF INCREASE IN SECURITY
KNOWLEDGE
The SQUARE methodology was presented to students in a basic, graduate soft-
ware engineering requirements modeling class. The class format is basically
stand-up lectures with student projects. The study involved two groups of stu-
dents. The participants were all graduate students in a software engineering man-
agement program at University of Detroit Mercy, as described in [23]. These
were all advanced students. Most of them had had the software management
core, with the exception of the specification class. That core is comprised of pro-
ject management, software processes, object modeling, and a testing and assur-
ance class.

The students all had an acceptable amount of academic background in under-
graduate software engineering, information systems, or professional IT work.
The students in the sample groups were formed from classes that were part of the
regularly scheduled curriculum. The groups sampled comprised both fall and
winter offerings of these two. Because class sizes varied, the actual number of
students in the groups also varied. However, the number was uniformly compa-
rable within each course. Thus, the individual group sizes were between 12 and
15 for the treatment.

One group was given the security requirements engineering and SQUARE prep-
aration. This consisted of four lectures as follows: A general introduction to se-
curity requirements engineering, An overview of the SQUARE method and
steps, Detailed discussion of SQUARE steps 1-4, and Detailed discussion of
SQUARE steps 5-9. These lectures are available for download from the CERT
website (http://www.cert.org/sse/square.html). The control group was given the
normal set of lectures, which are based on the contents of IEEE Standard 830-
1993 IEEE Recommended Practice for Software Requirements Specifications
[24].

Each group was given a pretest of knowledge involving 9 multiple choice ques-
tions (in Appendix A). Then, following the administration of the SQUARE prep-
aration the same two groups were given a post-test containing the same questions
and their products. The results were then subjected to a Student t
http://en.wikipedia.org/wiki/Student's_t-distribution in order to determine
whether the SQUARE lectures led to an increased capability in security require-
ments definition.

Table 1 displays the results of that analysis for both groups. In Table 1, df is de-
grees of freedom, p-value is probability of significance, t is student t value:

7 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

Table 1: Analysis of Pre and Post Test Results for Control and Treatment Groups

Question # Pre-Test Post-Test Pre-Test Post-Test

1 0.18 0.19 0.28 0.59

2 0.75 0.73 0.84 0.73

3 0.58 0.30 0.60 0.73

4 0.67 0.66 0.44 0.73

5 0.67 0.71 0.44 0.55

6 0.42 0.52 0.44 0.50

7 0.50 0.52 0.68 0.68

8 0.58 0.65 0.64 0.68

9 0.75 0.77 0.56 0.59

Mean 0.57 0.56 0.55 0.64

StDev 0.18 0.20 0.17 0.09

Df=12 Student t = 0.11 Student t = -1.40

 p-value = 0.54 p-value = 0.09

Neither group achieved significance. However, the large difference in p value
between the control and the treatment group would indicate that the SQUARE
treatment provided a considerable increase in security knowledge. One explana-
tion for the fact that the treatment did not quite achieve significance was the fact
that both groups were composed of advanced software engineering students and
as a result it is likely that both groups had inherent awareness of security topics.

As an additional test of the effectiveness of the SQUARE treatment, the stu-
dent’s end of term project deliverables were subjected to a qualitative analysis by
the instructor. The instructor has taught this same course for the past seven years.
It was found that the quality of the student’s project deliverables increased great-
ly. The use-case model and the analysis model for the semester model addressed
security requirements and risk in a way that was far superior to other semesters.
Additionally, the students were able to achieve these results with less interven-
tion and help from the instructor.

PRACTICAL IMPLICATIONS AND FUTURE PLANS
It’s easy to see that this idea could be extended to include software engineering
practices that focus on developing secure software. Although these are early re-
sults, based on two cases, when students learn about security requirements engi-

8 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

neering and SQUARE, they have a better understanding of what is needed to
produce more secure software. That finding is potentially important to the field
of software engineering. As such, the validated SQUARE model could prove
both highly useful to the profession as well as potentially very influential in the
teaching of security requirements engineering practice. It’s easy to see that this
idea could be extended to include software engineering practices that focus on
developing secure software.

As experience with these approaches grows, our plans include the gathering of
more quantitative data to show the benefit of the approach we have discussed
here. So far there have been some 300 downloads of the SQUARE educational
material from the CERT website. One of our goals this year is to conduct a sur-
vey to find out about the usage of the material and its results. It is our hope that
in the future there will be more synergy between software assurance and soft-
ware engineering education. Other universities around the world offer courses
and lectures that include methods for developing secure software. If those uni-
versities conduct similar studies, we expect to see additional results. For exam-
ple, SQUARE educational material was translated into Chinese and delivered at
National Defence University in Taiwan. Feedback from this offering is forth-
coming. If more universities incorporate the content of the 4 SQUARE lectures
into their course offerings, we hope to strengthen the results presented here.

REFERENCES
1. M. Newman, “Software errors cost U.S. economy $59.5 billion annually,”

National Inst. of Standards and Technology (NIST), Gaithersburg, MD,
2002.

2. R. A. Clark, Breakpoint. New York, NY: G. P. Putnam and Sons, 2007.
3. R. A. Clark and H. A. Schmidt, “A national strategy to secure cyberspace,”

The President’s Critical Infrastructure Protection Board, Washington, DC,
2002.

4. National Infrastructure Advisory Council (NIAC). “National strategy to
secure cyberspace.” Washington, DC: U.S. Department of Homeland Secu-
rity, 2003.

5. S. T. Redwine (Ed.), “Software assurance: A guide to the common body of
knowledge to produce, acquire and sustain secure software, version 1.1.”
U.S. Department of Homeland Security, Washington, DC, 2006.

6. T. Addison and S. Vallabh, “Controlling software project risks – an empiri-
cal study of methods used by experienced project managers,” KPMG, 2000.

9 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

7. J. J. Carr, “Requirements engineering and management: The key to design-
ing quality complex systems,” The TQM Magazine, vol. 12, pp. 400-407,
November-December 2000.

8. H. Hecht and M. Hecht, “How reliable Are requirements for reliable soft-
ware?” Software Tech News, vol. 3, 2000.

9. N. R. Mead and E. Hough, “Security requirements engineering for software
systems: Case studies in support of software engineering education,” in
19th Conf. Software Engineering Education and Training, Turtle Bay, Ha-
waii, 2006, pp. 149-156.

10. B. Palyagar, “Measuring and influencing requirements engineering process
quality,” in Australian Workshop on Requirements Engineering, Adelaide,
Australia, 2004.

11. B. Boehm and V. Basili, “Software defect reduction – Top 10 list,” IEEE
Computer, vol. 34, pp. 135-137, January 2001.

12. T. McGibbon, “A business case for software process improvement revised.”
Washington, DC: DoD Data Analysis Center for Software (DACS), 1999.

13. N. R. Mead and T. Stehney, “Security Quality Requirements Engineering
(SQUARE) methodology,” in SESS '05: 2005 Workshop on Software En-
gineering for Secure Systems—Building Trustworthy Applications, St.
Louis, MO, 2005. (2005b)

14. S. Lauesen and O. Vinter, “Preventing requirement defects: An experiment
in process improvement,” Requirements Engineering Journal, vol. 6, Febru-
ary 2001, pp. 37-50.

15. B. Palyagar, “A framework for validating process improvements in re-
quirements engineering, in RE 04-IEEE Joint Int., 2004, pp. 33-36.

16. R. C. Linger, N. R. Mead, and H. F. Lipson, “Requirements definition for
survivable systems,” in Third International Conf. Requirements Engineer-
ing, 1998, pp. 14-23.

17. S. Honiden, Y. Tahara, N. Yoshioka, K. Taguchi, and H. Washizaki, “Top
SE: Educating superarchitects who can apply software engineering tools to
practical development in Japan,” in 29th International Conf. Software En-
gineering (ICSE'07), 2007, pp. 708-718.

18. P. Giorgini, H. Mouratidis, and N. Zannone, “Modeling security and trust
with Secure Tropos,” in Integrating Security and Software Engineering:
Advances and Future Visions. Hershey, PA: IGI Global, 2007, pp. 160-189.

19. R. de Landtsheer and A. van Lamsweerde, “Reasoning about confidentiality
at requirements engineering time,” in 10th European Software Engineering
Conf., Lisbon, Portugal, 2005, pp. 41-49.

20. K. Garg and V. Varma, “Security: Bridging the academia-industry gap us-
ing a case study,” in XIII Asia Pacific Software Engineering Conf., Banga-
lore, India, 2006.

10 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

21. N. R. Mead, E. Hough, and T. Stehney, “Security Quality Requirements
Engineering (SQUARE) methodology,” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2005-
TR-009, 2005.

22. C. Woody, “Eliciting and Analyzing Quality Requirements: Management
Influences on Software Quality Requirements,” Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-
2005-TN-010, 2005.

23. G. Ford, “A progress report on undergraduate software engineering educa-
tion,” Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, Tech. Rep. CMU/SEI-94-TR-011, 1994.

24. IEEE Computer Society, “IEEE recommended practice for software re-
quirements specifications,” IEEE Standard 830-1993, Oct. 1998.

11 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

Copyright 2005-2013 Carnegie Mellon University and IEEE

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001120

12 | TEACHING SECURITY REQUIREMENTS ENGINEERING USING SQUARE

	Teaching Security Requirements Engineering Using SQUARE
	Introduction
	The importance of requirements engineering
	The problem with developing security requirements
	Integrating security requirements into standard curricula
	Case study one: Integrating security requirements into SWE curricula
	Case study two: Assessment of increase in security knowledge
	Practical implications and future plans
	References

