
1AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA  15213

[Distribution Statement A] Approved for public release and unlimited distribution.

AI for Software Engineering

Ipek Ozkaya and James Ivers

August 3, 2021

SEI Educator's Workshop



2AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research 
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an 
official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, 
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF 
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE 
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO 
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  Please see 
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form 
without requesting formal permission. Permission is required for any other use.  Requests for permission should be directed 
to the Software Engineering Institute at permission@sei.cmu.edu.

DM21-0688



3AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

AI for Software Engineering (AI4SE): 
A Blessing or a Curse?
AI4SE has become an umbrella term to refer to research that uses AI approaches to 
tackle software engineering challenges. 

• AI approaches can improve developer tools to eliminate subtle mistakes that later 
become hard to detect and propagate fixes for.
- e.g. Github Copilot by Microsoft, “AI pair programmer”
Pros: saving developer time, improved correctness over time
Cons: incorrect examples, licensing implications, violate copyrights

• Creating appropriate data sets has also emerged as one of the research areas in 
AI4SE
- e.g. Project Codenet by IBM (https://arxiv.org/abs/2105.12655) 

What will application of AI help solve that other approaches to date have 
not been able to help improved automated support for developers?

https://arxiv.org/abs/2105.12655


4AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Can AI Help Solve Enduring Challenges of Software Engineering:
Better, Faster, Cheaper?

Streamlining software development tasks towards successful system delivery continues to 
be resource intensive and error prone. 
We expect developers to grasp and manage ripple effects in increasingly complex (due to 
size, distribution, incompatibility, …) systems without effective tool support.
Lacking effective automation, time spent in design and testing continue to be reduced first 
when schedule challenges hit, further jeopardizing the resulting quality of the systems 
deployed. 
System sustainment and evolution, especially for legacy systems, continue to be a labor 
intensive, and high-risk effort.
Conformance to quality standards and intended architectures are not guaranteed as part of 
the software development frameworks and tool chains.

Common theme: Are we providing effective tools to improve developers 
tasks and cognitive overload towards developing higher quality software?



5AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Shaping Research in AI4SE

Focus on small, frequent, and AI-relevant problems
• Do what developers already do more efficiently (e.g., test faster).

- N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, I. Zorin:
Deploying Search Based Software Engineering with Sapienz at Facebook. SSBSE 2018: 3-45

• Do what developers already do better (e.g., catch more bugs).
- NC Shrikanth, T Menzies: 

The Early Bird Catches the Worm: Better Early Life Cycle Defect Predictors. https://arxiv.org/abs/2105.11082 2021. 

• Integrate things that are currently disconnected (e.g. requirement traceability).
- Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, Jane Cleland-Huang:

Traceability Transformed: Generating more Accurate Links with Pre-Trained BERT Models. ICSE 2021: 324-335

• Teach developers how to do tasks better as they go (e.g., advise/mentor with real-time feedback on 
implementation errors).

- Anshul Gupta, Neel Sundaresan,  Intelligent code reviews using deep learning KDD’18 Deep Learning Day, August 2018, London, UK

• Do tasks developers aren’t able to do today (e.g., leverage new data to integrate new conformance 
checks or generate new tests).

- Ongoing SEI work 

• Scale and optimize what developers already can do (e.g., consider more alternative design options).
- Ongoing SEI work 

https://arxiv.org/abs/2105.11082


6AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Polling Question 1



7AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Shaping Research in AI4SE – Research Challenges

Are developers better at writing specifications (AI generates code) than writing code (AI 
improves code)?
What new software development data needs to be collected (ethically also ensuring 
security and privacy) to enable future AI4SE research? 
How can developer trust be established? 
What does a human-computer AI4SE “partnership” look like? 

- Intern who I don't entirely trust, but who does save me a lot of time?
- Bot that does things for me? 
- Partner that advises me? 

What new and augmented activities become part of the software development lifecycle 
(SDLC), in an AI-assisted paradigm?



8AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Applying AI4SE Approach to Software Architecture Challenges

Software architecture is an important abstraction 
that helps organizations satisfy a wide range of 
business and mission goals.

• A significant portion of SEI stakeholders deal with large-
scale changes to existing systems (e.g., modernization)

• A common impediment is that architecture and design 
documentation is often missing or out of date

When architecture and design information differ 
from code, we generally

• Trust the code
• Lose the ability to apply architectural analyses (e.g., 

diagnosing root causes or the implications of a potential 
change)



9AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

How Can AI for Software Engineering Help?

We are motivated to help create a new generation of automation for architects that helps 
bridge the gap between architecture abstractions and code.  

Two SEI projects are currently investigating applications of AI to
• Refactor code to improve its design
• Check that implementations conform to "as intended" designs



10AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Untangling the Knot
Current SEI Research



11AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Is Never Done

Change is inevitable
• Requirements change
• Business priorities change
• Programming languages change
• Deployment environments change
• Technologies and platforms change
• Interacting systems change
• ...

To adapt to such changes, we need to 
periodically improve software structure 
(architecture) to match today’s needs.



12AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

A Key Barrier to Software Evolution

Many evolution projects start with a 
common problem – isolating software:

• Reusing capability in a different system, 
rehosting on a different platform 

• Factoring out common capability as a 
shared asset 

• Decomposing a monolith into more 
modular code 

• Migrating capabilities to a cloud or 
microservice architecture 

Automation that generates solutions can 
significantly reduce the cost and schedule 
impact of many kinds of software evolution.



13AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

An Automated Refactoring Assistant

We have developed an automated refactoring assistant for 
developers that improves software structure for several 
common forms of change that involve software isolation:

• Solves project-specific problems
• Uses a semi-automated approach
• Addresses all three labor-intensive activities
• Allows refactoring to be completed in less than 1/3 

of the time required by manual approaches

Refactoring is a technique for 
improving the structure of 
software, but it is typically a 
labor-intensive process in 
which developers must

• figure out where changes 
are needed

• figure out which 
refactoring(s) to use

• implement refactorings by 
rewriting code

Project-Specific Goal

Source Code

Refactored 
Source Code

Refactoring 
Assistant

J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried. Next Generation Automated Software Evolution: Refactoring at Scale. 2020. 28th 
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ‘20). 



14AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Key Concept – Problematic Couplings 

Only certain software dependencies 
interfere with any particular goal.

For example, if we want to harvest a 
feature:

• The core problem is dependencies (red 
lines) from software being harvested to 
software that is being left behind

• All other dependencies are irrelevant to 
the goal, allowing us to focus our analysis 
and search for solutions

This insight enables us to apply search-
based software engineering techniques 
and treat this as an optimization problem.



15AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Our Approach

We are adapting search-based optimization algorithms to recommend refactorings that 
isolate software to support harvesting or replacing capabilities.

Search 
Algorithm

Representation Operations Fitness 
Function

Project-specific goal

Source code Refactored source code

Graph 
Representation

Formalized 
Refactorings

Fitness 
Functions

Tested to 1.2M 
SLOC of C#

Uses static code 
analysis to generate 
an intermediate 
representation

Uses the graph for pre-
conditions and transformations 
for Fowler-style refactorings 

Measures computed on 
the graph to judge 
"goodness" of solutions

Currently solving 
60-99% of problem



16AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Satisfying Multiple Criteria

Examples include
• solution to the core problem – minimizing problematic 

couplings
• less work – minimizing code changes and unrealized 

interfaces
• maintainable code – improving code quality metrics
• understandable code – maximizing semantic coherence
• secure code – minimizing public members

Our prototype uses a multi-
objective genetic algorithm, 
based on NSGA-II, to generate 
Pareto optimal solutions that 
represent different trade-offs 
among objectives.

We use a combination of fitness functions to generate 
recommendations that developers will accept.



17AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Pareto-optimal Solutions

Multi-objective optimization generates 
choices that represent trade-offs among 
competing objectives.

• This search used two objectives –
problematic couplings and lines of code.

• Search is able to make significant 
progress, reducing problematic couplings 
to 23% of the original measure.

• It's a reasonable Pareto front; options 
indicate distinct trade-offs.

• It includes a number of solutions that are 
likely to be considered impractical, 
though this is subjective.



18AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Generating Refactoring Recommendations



19AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Refactoring Recommendations

Our prototype generates recommendations 
as a sequence of refactorings:

• clear directions for a developer
• independently reviewable prior to changing code
• built on refactorings supported by development 

environments
• future potential to automate application to code



20AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Vision: AI for Software Engineering
Can Help Keep Software Aligned with Needs

J. Ivers, I. Ozkaya, R. L. Nord. Can AI Close the Design-Code Abstraction Gap? Software Engineering 
Intelligence Workshop 2019, co-located with Intl. Conference on Automated Software Engineering: 122-125.



21AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Automated Design Conformance
Current SEI Research

implemented

intended

“Explicit storage of intermediate 
results … is error-prone”

“Non-adjacent processing 
steps do not share information”



22AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Automated Design Conformance during CI

An automated design conformance checker 
integrated into a continuous integration 
workflow will reduce time to detect 
violations from months or years to hours.
Automation enables early detection and 
allows remediation before the violation gets 
“baked in” to the implementation.
Detection of nonconformances allows 
program managers to hold developers 
(contractor or organic) accountable.



23AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Code-Design Abstraction Gap

Ivers et al. (2019). Can AI Close the Design-Code Abstraction Gap? International Workshop on Software 
Engineering Intelligence, IEEE/ACM International Conference on Automated Software Engineering (ASE).



24AI for Software Engineering – August 2021
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

From Code to Design Fragment
How do you recognize 
design abstractions from 
code?

• Rules or classifiers?
• Based on what data?
• How generalizable can 

you get?

Hotspot (Qt)
github.com/KDAB/hotspot

• 8K code lines
• 2,648 nodes and 

11,427 relations
• 7 publishers, 

37 subscribers


	AI for Software Engineering��Ipek Ozkaya and James Ivers����
	Slide Number 2
	AI for Software Engineering (AI4SE): �A Blessing or a Curse?
	Can AI Help Solve Enduring Challenges of Software Engineering:�Better, Faster, Cheaper?
	Shaping Research in AI4SE
	Polling Question 1
	Shaping Research in AI4SE – Research Challenges
	Applying AI4SE Approach to Software Architecture Challenges
	How Can AI for Software Engineering Help?
	Slide Number 10
	Software Is Never Done
	A Key Barrier to Software Evolution
	An Automated Refactoring Assistant
	Key Concept – Problematic Couplings 
	Our Approach
	Satisfying Multiple Criteria
	Pareto-optimal Solutions
	Generating Refactoring Recommendations
	Refactoring Recommendations
	Vision: AI for Software Engineering�Can Help Keep Software Aligned with Needs
	Slide Number 21
	Automated Design Conformance during CI
	Code-Design Abstraction Gap
	From Code to Design Fragment

