
1Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Untangling the Knot:
Recommending Refactorings

James Ivers

May 7, 2020

2Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

DM20-0380

3Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Topics

Project Overview
Near-term Potential
Long-term Potential
Wrap Up

4Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Our mission: Engineering
and securing software

Established in 1984 at
Carnegie Mellon University

~635 employees

Offices in Pittsburgh and
DC, with locations near
customer facilities in MA,
MD, TX, and CA

~$145M in annual funding
(~$20M USD(R&E) 6.2
and 6.3 Line funding)

CMU SEI is a DoD Federally Funded Research and Development Center

5Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Establishing a Discipline of Software Architecture

Range of methods and practices applicable
at different points in the development
lifecycle.
• Domains of expertise include IT, C2, tactical,

and health informatics
• Technology expertise includes IoT, big data,

digital twin, cloud, and machine learning

10+ courses, available in a mix of public, on-
site, and eLearning options.
3 professional certificates.
A collection of books for wide dissemination.

Conformance reviews
and automation
(under development)

Architecting in agile
environments, managing
technical debt,
refactoring automation
(under development)

Contextually relevant prototypes
Attribute-Driven Design, &
Architecture Options Workshop

Architecture Tradeoff Analysis
Method (ATAM), Incremental
Design Reviews

Views
& Beyond

6Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Project Overview

7Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Structure Enables Our Ability to Innovate

Quickly delivering new capabilities and taking advantage of new technology depend on an
ability to evolve software efficiently. The structure of legacy software, however, often fails
to support this goal.

A recent anecdote from a DoD contractor: The estimate for isolating a mission capability
from the underlying hardware platform was 14,000 staff hours (development only).

This is representative of a class of changes that involve feature isolation – isolating a
specific software capability from its context.

Other examples include
• migrating a capability to the cloud
• harvesting a component for reuse
• replacing a proprietary component

Our project aims to allow
feature isolation to be done
in one-third of the time.

8Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Even modest systems are hard to comprehend, and harder
to modify.

• A modest application with only 68K lines of code (LOC)
contains more than 10K nodes and 50K relations.

• Making a "simple" change, like isolating the code for
deployment as a service, can require reasoning about
hundreds of dependencies.

Software Complexity Is a Driver of the Effort Required

9Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Our Goal: Create an Automated Refactoring Assistant

Our goal is to create an automated assistant for developers
that recommends refactorings to isolate software, allowing
features to be harvested or replaced in 1/3 of the time it
takes to do so manually.

• Uses a semi-automated approach
• Addresses all three labor-intensive activities

In perspective, our work would reduce the cost in the
earlier example from 14,000 staff hours to 4,500 staff
hours—saving the cost of 9,500 hours of development.

Refactoring is a
technique for improving
the structure of software,
but it is typically a labor-
intensive process in
which developers must

• figure out where
changes are needed

• figure out which
refactoring(s) to use

• implement refactorings
by rewriting code

10Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Our Approach

We are adapting search-based optimization algorithms to recommend refactorings that
isolate software to support harvesting or replacing features.

Search
Algorithm

Project-specific goal

Source code Refactored source code

11Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Feature Isolation Problems

Many software changes become much easier after isolating a feature from its context.
We are focusing on two primary use cases: harvesting and replacing.

Harvesting software involves moving a feature from one context to another
• Reusing capability in a different system or rehosting on a different platform
• Factoring out common capability as a shared asset
• Decomposing a monolith into more modular code
• Migrating services to a cloud or microservice architecture

Replacing software involve removing a feature in favor of another option
• Better options from another supplier
• Removing proprietary/licensed code

12Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Near-term Potential
(i.e., we can do this now)

13Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Problematic Couplings

Basis: Only certain software dependencies
interfere with the goal.

If attempting to harvest a feature
• dependencies from software moving to a

new context to software that isn't moving
are the core problem (red lines)

• all other dependencies are irrelevant to
the task, allowing us to focus our
analysis and search for solutions

14Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Analysis of Problematic Couplings

• Code size spans 6K to
750K source LOC

• Scenarios illustrate a
range of difficulty – 26
to 13K problematic
couplings

• This information can
be further analyzed to
understand the
complexity of a
proposed change.

15Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

An Illustration of this Analysis

We've analyzed a number of open source
projects and one commercial project.
The motivating scenario for this analysis is a
desire to replace the existing pub/sub
mechanism with a better option.

Data is from an open source project
(https://github.com/duplicati/duplicati).

https://github.com/duplicati/duplicati

16Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Graph Data

NODES [10207]
Namespaces = 79
Classes = 866
Interfaces = 132
Structs = 24
Fields = 2094
Properties = 3160
Methods = 3278
Delegates = 13
Events = 21
Enums = 80
Files = 460

RELATIONSHIPS [49696]
Calls = 7986
Reads = 15448
Writes = 3984
Inherits = 179
Implements = 267
Locations = 9670
Declares = 9656
Type Uses = 2506

17Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Problematic Couplings for the Scenario

Initial problematic coupling count: 2,040
• These are dependencies from code not being replaced to code that is being replaced
• Each occurrence is counted separately (e.g., two dependencies on the same method

will be counted individually)

What does this mean?

We can slice the data a few different ways...

18Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What Kinds of Dependencies did We Find?

Data looks pretty similar to
open source examples that
we're studying

• Most common relations
involve reading/writing
fields

• Method calls are common
• Inheritance and and

interface implementation
aren't common, but are
more than in other cases

19Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What do the Dependencies Point To? - 1

By type, most dependencies are on Properties, Classes, and Methods.

20Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What do the Dependencies Point To? - 2

By name, dependencies concentrate on a smaller number of elements—144 unique
names that collectively cover 2040 dependencies.

21Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Where are All the Types Defined?

All 15 classes are defined in namespaces
• The classes are declared across 11 namespaces
• There are no dependencies on nested classes

All 129 elements (Events, Methods, and Properties) are all defined in classes
• Specifically, they are defined across 17 classes
• 9 of these classes are not included in the above list of 15 classes

So, basically there are dependencies on 24 classes (or members thereof)
• The initial scenario identified 53 classes, of which less than half are issues in a

replacement scenario

22Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Long-term Potential
(i.e., give us 6-12 months)

23Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Graph
Representation

Formalized
Refactorings

Fitness
Functions

Our Approach

We are adapting search-based optimization algorithms to recommend refactorings that
isolate software to support harvesting or replacing capabilities.

Search
Algorithm

Project-specific goal

Source code Refactoring Recommendations

24Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Initial (Local) Search Results

Local search based on problematic couplings
• Illustrative of what we're working towards
• Not yet what we'd consider a "good" solution, but encouraging

25Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Current Work – Multi-objective Search

Multi-objective genetic algorithms like NSGA-II allow us to employ multiple fitness
functions and generate Pareto-optimal solutions.

We are exploring fitness functions to find a combination that yields
recommendations that developers will accept.

Candidate fitness functions include
• solving the core problem – minimizing problematic couplings
• reducing work – minimizing code changes and unrealized interfaces
• maintainable code – improving a range of code quality metrics
• understandable code – maximizing semantic coherence

26Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Refactoring Recommendations

Our prototype generates recommendations
as a sequence of refactorings

• clear directions for a developer
• independently reviewable prior to

changing code
• built on refactorings supported by

development environments
• future potential to automate application

of the refactorings to code

27Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Wrap Up

Please let us know if you are interested. For example, if you
• would like to discuss potential use for estimation
• have ideas on important objectives to consider
• have access to data we could use to validate the research
• would like to discuss opportunities to pilot the refactoring recommendations

Our current prototype
• is open source, but relies on one commercial tool
• handles C# code, with future potential for Java
• has been tested on up to 1.2M SLOC code bases

28Untangling the Knot – May 2020
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

For More Information

James Ivers
Initiative Lead
Architecture Analysis, Design, and
Automation
jivers@sei.cmu.edu
412-268-7793

mailto:jivers@sei.cmu.edu

	Untangling the Knot:�Recommending Refactorings
	Slide Number 2
	Topics
	Slide Number 4
	Establishing a Discipline of Software Architecture
	Slide Number 6
	Software Structure Enables Our Ability to Innovate
	Software Complexity Is a Driver of the Effort Required
	Our Goal: Create an Automated Refactoring Assistant
	Our Approach
	Feature Isolation Problems
	Slide Number 12
	Problematic Couplings
	Analysis of Problematic Couplings
	An Illustration of this Analysis
	Graph Data
	Problematic Couplings for the Scenario
	What Kinds of Dependencies did We Find?
	What do the Dependencies Point To? - 1
	What do the Dependencies Point To? - 2
	Where are All the Types Defined?
	Slide Number 22
	Our Approach
	Initial (Local) Search Results
	Current Work – Multi-objective Search
	Refactoring Recommendations
	Wrap Up
	For More Information

