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Quantifying Uncertainty: A Key Component for informative and Robust AI Systems
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Quantifying Uncertainty: A Key Component for informative and Robust AI Systems

Friendly Truck

Image: South Carolina National Guard, 151st Signal Battalion

(0.3459 Confident)

Accurate estimates of uncertainty can lead to better 
informed decision making.
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Quantifying Uncertainty: A Key Component for Informative and Robust AI Systems
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By allowing high-level reasoning to be 
informed by predictive uncertainty, AI 

systems can be more robust to failures 
caused by unconfident predictions.
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Quantifying Uncertainty: A Key Component for Informative and Robust AI Systems
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By allowing high-level reasoning to be 
informed by predictive uncertainty, AI 

systems can be more robust to failures 
caused by unconfident predictions.

Our Work: Evaluating, Characterizing, Articulating, and 
Rectifying Uncertainty in ML models for the purpose of 

more informative and robust AI Systems

This Talk: Evaluating ML model calibration.
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Calibration: A Way to Interpret Model Uncertainty

How do we 
understand these values?

Friendly Truck Enemy Tank

? Classifier (0.6,0.4)
FTr ETa
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Calibration: A Way to Interpret Model Uncertainty

Classifier Calibration: Classifier outputs match the frequency of class labels.

Friendly Truck Enemy Tank

? Classifier (0.6,0.4)
FTr ETa
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Calibration: A Way to Interpret Model Uncertainty

For all possible inputs that the classifier outputs (0.6,0.4)…
60% of the inputs should be a friendly truck,
40% of the inputs should be an enemy tank.

Friendly Truck Enemy Tank

? Classifier (0.6,0.4)
FTr ETa

Classifier Calibration: Classifier outputs match the frequency of class labels.
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Evaluating Classifier Calibration

Modern machine learning literature has focused on evaluating classifier calibration 
according to their Top-1 Expected Calibration Error (ECE)

Classes = {Friendly Tank, Friendly Truck, Enemy Tank,  Enemy Truck}

Classifier (0.6, 0.25, 0.05, 0.1)
FTrFTa ETa ETr
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Evaluating Classifier Calibration

Modern machine learning literature has focused on evaluating classifier calibration 
according to their Top-1 Expected Calibration Error (ECE)

Classes = {Friendly Tank, Friendly Truck, Enemy Tank,  Enemy Truck}

Classifier (0.6, 0.25, 0.05, 0.1)
FTrFTa ETa ETr

Top-1 Expected Calibration Error (ECE)
Considers only the most confident class in evaluating for calibration

For all possible inputs that the classifier outputs 0.6 as the most confident class…
60% of the those inputs should be that class.
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Evaluating Classifier Calibration

Modern machine learning literature has focused on evaluating classifier calibration 
according to their Top-1 Expected Calibration Error (ECE).

Classes = {Friendly Tank, Friendly Truck, Enemy Tank,  Enemy Truck}

Classifier (0.6, 0.25, 0.05, 0.1)
FTrFTa ETa ETr

According to Top-1 ECE, these two classifiers are considered the same.
However, the two outputs can mean very different things with mission context.

Classifier (0.6, 0.0, 0.40, 0.0)
FTrFTa ETa ETr
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Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes

Overall Goal: Evaluate the state of the art 
in classifier calibration according to 
context focused metrics to observe how 
they perform in different definitions of 
reliability.

Experiment #1: Top-𝑘𝑘
• Data Set: ImageNet
• Base Model: ResNet50

Question: How to these methods perform 
outside of the most confident class?

Traditional ECE – Measures miscalibration for most confident class
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Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Overall Goal: Evaluate the state of the art 
in classifier calibration according to 
context focused metrics to observe how 
they perform in different definitions of 
reliability.

Experiment #1: Top-𝑘𝑘
• Data Set: ImageNet
• Base Model: ResNet50

Question: How to these methods perform 
outside of the most confident class?

Top-10 ECE– Measures miscalibration for the 10 most confident classes

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes
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Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Overall Goal: Evaluate the state of the art 
in classifier calibration according to 
context focused metrics to observe how 
they perform in different definitions of 
reliability.

Experiment #1: Top-𝑘𝑘
• Data Set: ImageNet
• Base Model: ResNet50

Question: How to these methods perform 
outside of the most confident class?

Full ECE– Measures miscalibration across all classes

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes
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Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Overall Goal: Evaluate the state of the art 
in classifier calibration according to 
context focused metrics to observe how 
they perform in different definitions of 
reliability.

Experiment #1: Top-𝑘𝑘
• Data Set: ImageNet
• Base Model: ResNet50

Question: How to these methods perform 
outside of the most confident class?

Full ECE– Measures miscalibration across all classes

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes

More specific metrics show that many calibration techniques 
that perform well on traditional ECE can perform worse than 

using no explicit calibration procedure when considering 
more classes.
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Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Experiment #2: Inter-Interval ECE
• Data Set: COVID-CRX-2
• Base Model: ResNet50

Assume:
Confidence will be displayed as to a 
clinician as one of five categories:
[0.0,0.2] – Very low confidence of COVID
[0.2,0.4] – Low confidence of COVID
…
[0.8,1.0] – Very high confidence of COVID

How can we evaluate classifier calibration 
in this context?

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes
4. How confidence will be shown to an end user
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Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Top-1 ECE – Measures miscalibration for most confident class

Experiment #2: Inter-Interval ECE
• Data Set: COVID-CRX-2
• Base Model: ResNet50

Assume:
Confidence will be displayed as to a 
clinician as one of five categories:
[0.0,0.2] – Very low confidence of COVID
[0.2,0.4] – Low confidence of COVID
…
[0.8,1.0] – Very high confidence of COVID

How can we evaluate classifier calibration 
in this context?

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes
4. How confidence will be shown to an end user
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Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Inter-Interval ECE– Measures degree of miscalibration with respect to each category

Experiment #2: Inter-Interval ECE
• Data Set: COVID-CRX-2
• Base Model: ResNet50

Assume:
Confidence will be displayed as to a 
clinician as one of five categories:
[0.0,0.2] – Very low confidence of COVID
[0.2,0.4] – Low confidence of COVID
…
[0.8,1.0] – Very high confidence of COVID

How can we evaluate classifier calibration 
in this context?

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes
4. How confidence will be shown to an end user
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Inter-Interval ECE– Measures degree of miscalibration with respect to each category

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
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2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes
4. How confidence will be shown to an end user

Experiment #2: Inter-Interval ECE
• Data Set: COVID-CRX-2
• Base Model: ResNet50

Assume:
Confidence will be displayed as to a 
clinician as one of five categories:
[0.0,0.2] – Very low confidence of COVID
[0.2,0.4] – Low confidence of COVID
…
[0.8,1.0] – Very high confidence of COVID

How can we evaluate classifier calibration 
in this context?



26Knowing When You Don’t Know
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release 
and unlimited distribution.

Research Review 2021

Our Work: Context Focused Calibration Metrics 
(Kirchenbauer, Oaks, and Heim; 2021 Under Review)

Inter-Interval ECE– Measures degree of miscalibration with respect to each category

Inter-Interval ECE enables evaluation of 
classifiers according to specified 

confidence categories that reflect 
classifier usage. 

Using a statistical framing of ECE, we developed a number of metrics that consider these factors:
1. Application-specific tradeoffs between classes (e.g., “Friendly” versus “Enemy” vehicles)
2. Specific instances of interest (e.g., Measuring calibration on instances with label “Enemy Vehicle”)
3. Subsets of the class probability space between most confident class and all classes
4. How confidence will be shown to an end user

Experiment #2: Inter-Interval ECE
• Data Set: COVID-CRX-2
• Base Model: ResNet50

Assume:
Confidence will be displayed as to a 
clinician as one of five categories:
[0.0,0.2] – Very low confidence of COVID
[0.2,0.4] – Low confidence of COVID
…
[0.8,1.0] – Very high confidence of COVID

How can we evaluate classifier calibration 
in this context?
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Final Thoughts
Machine-learned models are are able to express uncertainty in their predictions that can 
lead to more informative, robust AI systems by
1. allowing humans to reason about when the model is likely to be incorrect
2. allowing components in a larger system to take different actions based on model 

confidence

In this project we research methods to evaluate, characterize, articulate and rectify 
uncertainty

Next steps:
- Develop a demonstration highlighting the utility of accurately expressing uncertainty.
- Create techniques to characterize the cause of uncertainty for a ML model.

For the audience: We are always looking for motivating real-world uses for our work.  If 
you have a need for AI Systems that are able to express and reason under uncertainty, do 

not hesitate to reach out.

info@sei.cmu.edu
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