
1Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Combined Analysis for Source Code and
Binary Code for Software Assurance

William Klieber

November 2021

2Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported
by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this
material are those of the author(s) and should not be
construed as an official Government position, policy, or
decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS"
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use
and distribution.

This material may be reproduced in its entirety, without
modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is
required for any other use. Requests for permission
should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM21-0866

3Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Overview

• Goal: Increase assurance of binary components.
- Decompile and perform static analysis.
- Perform localized repairs.
- Increase trustworthiness of software fielded by DoD.

• Adapt an existing open-source decompiler (Ghidra):
- originally developed for manual reverse engineering
- not designed to produce recompilable code
- gap: semantic inaccuracies and syntactic errors

• Key technical steps:
- Determine which functions have been correctly decompiled.
- Run static analysis and localized repair.
- Recombine (e.g., using DDisasm).

4Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Overview (continued)

• A perfect decompilation of the entire binary isn’t necessary.

• Main contributions of our work
- Develop semantic-equivalence checker.
- Improve decompiler.

• Submit to the mainline branch of Ghidra.

• This line of work is continuing this year (FY22).

5Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

DoD Impact

• Enable the DoD to find and fix potential vulnerabilities in binary code.

• Collaborators and interested transition partners at the DoD
- have binaries for which software assurance is desired
- evaluate and improve our tool
- use the tool in practice when it is ready

6Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Example of Original and Decompiled Code

Original Code
void insertion_sort(unsigned int* A, size_t len) {

for (size_t j = 1; j < len; ++j) {
unsigned int key = A[j];
/* insert A[j] into the sorted sequence A[0..j-1] */
size_t i = j - 1;
while (i >= 0 && A[i] > key) {

A[i + 1] = A[i];
--i;

}
A[i + 1] = key;

}
}

Decompiled Code
void insertion_sort(long param_1, ulong param_2) {

uint uVar1; ulong uVar2;
ulong local_18; ulong local_10;
local_18 = 1;
while (local_18 < param_2) {

uVar1 = *(uint *)(param_1 + local_18 * 4);
uVar2 = local_18;
while (local_10 = uVar2 - 1,

uVar1 < *(uint *)(param_1 + local_10 * 4))
{

*(undefined4 *)(param_1 + uVar2 * 4) =
*(undefined4 *)(param_1 + local_10 * 4);

uVar2 = local_10;
}
*(uint *)(uVar2 * 4 + param_1) = uVar1;
local_18 = local_18 + 1;

}
}

7Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

State of the Art – Recompilation of Decompiled Code

• Paper: “How far we have come: testing decompilation correctness of C decompilers.”
ACM Int’l Symposium on Software Testing & Analysis (ISSTA), July 2020.

- tested synthetic code without input or nondeterminism

- Ghidra: out of 2504 test cases (averaging around 250 LoC), 93% were correctly decompiled

- only unoptimized code

- no structs, unions, arrays, or pointers

8Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Ideal Pipeline (for Use On In-the-Wild Binaries)

Decompiler

Clang

Original
binary Analysis

and/or
Repair

Semantic equivalence checker

Decompiled
code

Recompiled
binary

Repaired source

Analysis results

Filter
Correctly

decompiled
functions

9Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

FY21 Pipeline (for Measurement and Evaluation)

Clang
Original
source

Semantic equivalence checker

Clang Decompiler
Binary Decompiled

Source

Clang
LLVM IR

LLVM IR

10Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Proving Semantic Equivalence

• We use SeaHorn as the backend for our semantic equivalence checker.

- SeaHorn in turn uses the Z3 SMT solver.

• Ask SeaHorn: Does the decompiled function have the same effect on the memory
as the original function?
- Conceptually, we consider the entire memory space.
- The representation of memory is rather small.
- There is one symbolic memory address for each memory access.
- The SMT solver must consider aliasing between different symbolic addresses.

• This is work in progress and we expect to have results early in FY22.

11Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Code Recompilation

SPEC 2006
Benchmarks

This table shows the percentage
of source-code functions that are
extracted as recompilable (i.e.,
syntactically valid) C code.

Project
Source

Functions
Recomp

Functions Percent
dos2unix 40 17 43%
jasper 725 377 52%
lbm 21 13 62%
mcf 24 18 75%
libquantum 94 34 36%
bzip2 119 80 67%
sjeng 144 93 65%
milc 235 135 57%
sphinx3 369 183 50%
hmmer 552 274 50%
gobmk 2,684 853 32%
hexchat 2,281 1,106 48%
git 7,835 3,032 39%
ffmpeg 21,403 10,223 48%
Average 52%

12Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Types of Syntactic Errors

Count Error Type
609 Request for member in something not a structure or union
706 Invalid operands to binary operator
910 Other

2,972 Use of undeclared identifier

1,224 Void value not ignored as it ought to be

1,153 Too many arguments to function

3,434 Too few arguments to function

11,008 Total

13Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Increasing Accuracy of Function Arguments

• Consider a chain of function calls: fn1 calls fn2, which calls fn3.

• Calling convention: arguments are passed via CPU registers.

• Note that fn2 may forward some of its arguments to fn3 implicitly.

• To determine the number of arguments, do a whole-program analysis:
- Start by analyzing leaf functions and work upwards, asking Ghidra to redo

analysis given new information about callees.

- For recursive functions, use a fixed-point algorithm.

14Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Conclusion

• We are adapting Ghidra.

• About half of decompiled functions successfully recompile
(but semantic equivalence hasn’t been assessed yet).

• We don’t need a perfect decompilation of the entire binary.

• This line of work is continuing this year (FY22).

• If you are interested in collaborating or transitioning into practice,
please get in touch with us.

15Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Contact Information

Presenter / Point of Contact
Will Klieber
Software Security Researcher
Telephone: +1 412.268.9207
Email: info@sei.cmu.edu

Will Klieber

Team

David Svoboda Ruben Martins
(CMU SCS)

	Slide Number 1
	Slide Number 2
	Overview
	Overview (continued)
	DoD Impact
	Example of Original and Decompiled Code
	State of the Art – Recompilation of Decompiled Code
	Ideal Pipeline (for Use On In-the-Wild Binaries)
	FY21 Pipeline (for Measurement and Evaluation)
	Proving Semantic Equivalence
	Code Recompilation
	Types of Syntactic Errors
	Increasing Accuracy of Function Arguments
	Conclusion
	Contact Information

