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Overview

• Goal: Increase assurance of binary components.
- Decompile and perform static analysis.
- Perform localized repairs.
- Increase trustworthiness of software fielded by DoD.

• Adapt an existing open-source decompiler (Ghidra):
- originally developed for manual reverse engineering
- not designed to produce recompilable code
- gap: semantic inaccuracies and syntactic errors

• Key technical steps:
- Determine which functions have been correctly decompiled.
- Run static analysis and localized repair.
- Recombine (e.g., using DDisasm).
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Overview (continued)

• A perfect decompilation of the entire binary isn’t necessary.

• Main contributions of our work
- Develop semantic-equivalence checker.
- Improve decompiler.  

• Submit to the mainline branch of Ghidra.

• This line of work is continuing this year (FY22).



5Binary Software Assurance
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release 
and unlimited distribution.

Research Review 2021

DoD Impact

• Enable the DoD to find and fix potential vulnerabilities in binary code.

• Collaborators and interested transition partners at the DoD
- have binaries for which software assurance is desired
- evaluate and improve our tool
- use the tool in practice when it is ready
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Example of Original and Decompiled Code

Original Code
void insertion_sort(unsigned int* A, size_t len) {

for (size_t j = 1; j < len; ++j) {
unsigned int key = A[j];
/* insert A[ j] into the sorted sequence A[0..j-1] */
size_t i = j - 1;
while (i >= 0 && A[i] > key) {

A[i + 1] = A[i];
--i;

}
A[i + 1] = key;

}
}

Decompiled Code
void insertion_sort(long param_1, ulong param_2) {

uint uVar1; ulong uVar2;
ulong local_18; ulong local_10;
local_18 = 1;
while (local_18 < param_2) {

uVar1 = *(uint *)(param_1 + local_18 * 4);
uVar2 = local_18;
while (local_10 = uVar2 - 1, 

uVar1 < *(uint *)(param_1 + local_10 * 4)) 
{

*(undefined4 *)(param_1 + uVar2 * 4) =
*(undefined4 *)(param_1 + local_10 * 4);

uVar2 = local_10;
}
*(uint *)(uVar2 * 4 + param_1) = uVar1;
local_18 = local_18 + 1;

}
}
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State of the Art – Recompilation of Decompiled Code

• Paper: “How far we have come: testing decompilation correctness of C decompilers.” 
ACM Int’l Symposium on Software Testing & Analysis (ISSTA), July 2020.

- tested synthetic code without input or nondeterminism

- Ghidra: out of 2504 test cases (averaging around 250 LoC), 93% were correctly decompiled

- only unoptimized code

- no structs, unions, arrays, or pointers
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Ideal Pipeline (for Use On In-the-Wild Binaries)
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FY21 Pipeline (for Measurement and Evaluation)
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Proving Semantic Equivalence

• We use SeaHorn as the backend for our semantic equivalence checker.

- SeaHorn in turn uses the Z3 SMT solver.

• Ask SeaHorn: Does the decompiled function have the same effect on the memory 
as the original function?  
- Conceptually, we consider the entire memory space.
- The representation of memory is rather small.
- There is one symbolic memory address for each memory access.
- The SMT solver must consider aliasing between different symbolic addresses.

• This is work in progress and we expect to have results early in FY22.
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Code Recompilation

SPEC 2006
Benchmarks

This table shows the percentage 
of source-code functions that are 
extracted as recompilable (i.e., 
syntactically valid) C code.

Project
Source 

Functions
Recomp

Functions Percent
dos2unix 40 17 43%
jasper 725 377 52%
lbm 21 13 62%
mcf 24 18 75%
libquantum 94 34 36%
bzip2 119 80 67%
sjeng 144 93 65%
milc 235 135 57%
sphinx3 369 183 50%
hmmer 552 274 50%
gobmk 2,684 853 32%
hexchat 2,281 1,106 48%
git 7,835 3,032 39%
ffmpeg 21,403 10,223 48%
Average 52%
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Types of Syntactic Errors

Count Error Type
609 Request for member in something not a structure or union 
706 Invalid operands to binary operator                      
910 Other                                                    

2,972 Use of undeclared identifier                             

1,224 Void value not ignored as it ought to be                 

1,153 Too many arguments to function                           

3,434 Too few arguments to function                            

11,008 Total                                                    
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Increasing Accuracy of Function Arguments

• Consider a chain of function calls: fn1 calls fn2, which calls fn3.

• Calling convention: arguments are passed via CPU registers. 

• Note that fn2 may forward some of its arguments to fn3 implicitly.

• To determine the number of arguments, do a whole-program analysis:
- Start by analyzing leaf functions and work upwards, asking Ghidra to redo 

analysis given new information about callees.

- For recursive functions, use a fixed-point algorithm.
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Conclusion

• We are adapting Ghidra.

• About half of decompiled functions successfully recompile
(but semantic equivalence hasn’t been assessed yet).

• We don’t need a perfect decompilation of the entire binary.

• This line of work is continuing this year (FY22).

• If you are interested in collaborating or transitioning into practice, 
please get in touch with us.
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