
1Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Automated Design Conformance
during Continuous Integration

Robert Nord, Lena Pons

November 2021

2Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Document Markings

Copyright 2021 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its
Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.
DM21-0807

3Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Research Review 2021

Software Nonconformance
Automated Design Conformance during Continuous Integration

4Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Software Architecture Enables Our Ability to Innovate

5Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Software Architecture Enables Our Ability to Innovate

Software architecture is an abstraction that helps
organizations satisfy business and mission goals.

The community has evolved a body of knowledge
in the form of architecture styles that guides design
and analysis.

The degree to which a system meets its goals is
dependent on architectural decisions.

For the implementation to exhibit the quality
attributes engineered at the architectural level,
it must conform to the software architecture.

6Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Challenges in Software Conformance

Modular Open Systems Approach (MOSA)
• technical and business strategy
• affordable and adaptable systems

FACE Technical Standard
• conformance verification matrix

- 487 items
- 194 are inspection of design

• component-level standard

FACE-compliant systems may encounter
integration problems.

The Open Group (2017). Reference Architecture,
FACE (Future Airborne Capability Environment)
Technical Standard, Edition 3.0.

7Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

An automated design conformance
checker integrated into a continuous
integration (CI) workflow will reduce
time to detect violations.
Automation enables early detection
and allows remediation before the
violation becomes a fixed feature of
the implementation.
Detection of nonconformances allows
program managers to hold developers
(contractor or organic) accountable.

Automated Design Conformance during CI

8Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Extract Design From Code

We are motivated to create a new generation of automation for architects that
helps bridge the gap between architecture abstractions and code.
Ivers et al. (2019). Can AI Close the Design-Code Abstraction Gap? International Workshop on Software Engineering
Intelligence, IEEE/ACM International Conference on Automated Software Engineering (ASE).

9Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Research Review 2021

Conformance Checker
Automated Design Conformance during Continuous Integration

10Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Prototype Design Conformance Checker

The approach builds on code analysis, software architecture, and machine
learning.

11Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Communication Styles in Software Systems
Practitioner Vocabulary
• client-server
• N-tier
• service oriented

architecture
• partitioning
• message passing
• distributed data service
• HTTP/HTTPS
• message queue
• shared memory
• sockets
• UDP/IP
• web services stack

Canonical Design
Knowledge
• synchronous publish-

subscribe
• HTTP and message queue
• message-oriented

middleware
• asynchronous point-to-point
• binary protocols

Publish-subscribe

Aksakalli et al. (2021). Deployment and
communication patterns in microservice
architectures: A systematic literature
review, Journal of Systems and Software.

Software-reliant systems from
1998-2018, Architecture Tradeoff
Analysis Method (ATAM) Reports.

12Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Hotspot using the Qt Framework

How do developers
recognize design
abstractions from
code?
Hotspot

• performance
analysis GUI

• 8K C++ code lines
• Qt framework
• 7 publishers
• 37 subscribers

github.com/KDAB/hotspot

13Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

How would an automated
technique recognize
design abstractions from
code?

• Rules or classifiers?
• Based on what data?
• How generalizable can

you get?

From Code to Design Fragment

14Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Rules-Based Predictor

Rules are a reasonable approach for some abstractions in commonly used
frameworks.
Work on rules-based predictors is work towards automating data labeling.
As we develop more precise definitions for communication styles,
we will identify how different styles may be better characterized using
different kinds of predictors.

Cypher Query Language.

15Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Research Review 2021

General Solution to the Design-Code
Abstraction Gap

Automated Design Conformance during Continuous Integration

16Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Expanding on the Conformance Checker Prototype

In the prototype, we used
clues from frameworks to
label constructs in multiple
projects.

As we work towards
generalizing techniques for
finding architecture styles
more broadly, we look to
lower level realizations.

17Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Formalizing and Differentiating Styles

Another challenge to predicting styles is that many styles can look similar, lack
specificity and formalism in definition, or cannot be characterized by looking at
only one source of information.

A 2-node peer-to-peer
configuration can look
similar to client-server.

?

18Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Extracting and Connecting Information Across a Code Base

app_method(p1, p2) {
…
frame_method(p1)

…
}

frame_method(p1) {
…
stdlib_method(p1)

…
}

Calls from application
source use services
implemented in common
frameworks.

In turn, calls from
frameworks are built on
top of programming
language libraries (e.g.,
C++ standard library)
and operating system.

19Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Indicators of Properties Exist In Multiple Files

app_method(p1, p2) {
…
app_data_meth(p2)
…
frame_method(p1)
…

}

frame_method(p1,p2){
…
stdlib_method(p1,

block=true)
frame_indirect(p2)
…

}

stdlib_method(p1,
block){

…
open_socket(p1,

block)
…

}

calls calls

data = passing synchrony = true transport = socket

routing = indirect

APPLICATION FRAMEWORK LIBRARY

20Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Accumulating Indicators in One Representation

21Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Bridging the Design – Code Abstraction Gap

22Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Next Steps: More Projects, More Styles

23Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Project Team Members

Robert Nord
Principal Member of the
Technical Staff, CMU / SEI

James Ivers
Principal Engineer,
CMU / SEI

John Klein
Principal Member of the
Technical Staff, CMU / SEI

Lena Pons
Software Architecture and
AI Researcher, CMU / SEI

Chris Seifried
Associate Engineer,
CMU / SEI

	Slide Number 1
	Document Markings
	Slide Number 3
	Software Architecture Enables Our Ability to Innovate
	Software Architecture Enables Our Ability to Innovate
	Challenges in Software Conformance
	Automated Design Conformance during CI
	Extract Design From Code
	Slide Number 9
	Prototype Design Conformance Checker
	Communication Styles in Software Systems
	Hotspot using the Qt Framework
	From Code to Design Fragment
	Rules-Based Predictor
	Slide Number 15
	Expanding on the Conformance Checker Prototype
	Formalizing and Differentiating Styles
	Extracting and Connecting Information Across a Code Base
	Indicators of Properties Exist In Multiple Files
	Accumulating Indicators in One Representation
	Bridging the Design – Code Abstraction Gap
	Next Steps: More Projects, More Styles
	Project Team Members

