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Software Architecture Enables Our Ability to Innovate

Software architecture is an abstraction that helps 
organizations satisfy business and mission goals.

The community has evolved a body of knowledge 
in the form of architecture styles that guides design 
and analysis. 

The degree to which a system meets its goals is 
dependent on architectural decisions.

For the implementation to exhibit the quality 
attributes engineered at the architectural level, 
it must conform to the software architecture.
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Challenges in Software Conformance

Modular Open Systems Approach (MOSA)
• technical and business strategy
• affordable and adaptable systems

FACE Technical Standard 
• conformance verification matrix 

- 487 items
- 194 are inspection of design

• component-level standard

FACE-compliant systems may encounter 
integration problems.

The Open Group (2017). Reference Architecture, 
FACE (Future Airborne Capability Environment) 
Technical Standard, Edition 3.0. 
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An automated design conformance 
checker integrated into a continuous 
integration (CI) workflow will reduce 
time to detect violations.
Automation enables early detection 
and allows remediation before the 
violation becomes a fixed feature of 
the implementation.
Detection of nonconformances allows 
program managers to hold developers 
(contractor or organic) accountable.

Automated Design Conformance during CI
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Extract Design From Code

We are motivated to create a new generation of automation for architects that 
helps bridge the gap between architecture abstractions and code.
Ivers et al. (2019). Can AI Close the Design-Code Abstraction Gap? International Workshop on Software Engineering 
Intelligence, IEEE/ACM International Conference on Automated Software Engineering (ASE).
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Automated Design Conformance during Continuous Integration
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Prototype Design Conformance Checker

The approach builds on code analysis, software architecture, and machine 
learning.



11Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Communication Styles in Software Systems
Practitioner Vocabulary
• client-server
• N-tier
• service oriented 

architecture
• partitioning
• message passing
• distributed data service
• HTTP/HTTPS
• message queue
• shared memory
• sockets
• UDP/IP
• web services stack

Canonical Design 
Knowledge
• synchronous publish-

subscribe 
• HTTP and message queue
• message-oriented 

middleware
• asynchronous point-to-point
• binary protocols

Publish-subscribe

Aksakalli et al. (2021). Deployment and 
communication patterns in microservice 
architectures: A systematic literature 
review, Journal of Systems and Software.

Software-reliant systems from 
1998-2018, Architecture Tradeoff 
Analysis Method (ATAM) Reports.
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Hotspot using the Qt Framework

How do developers 
recognize design 
abstractions from 
code?
Hotspot

• performance 
analysis GUI

• 8K C++ code lines
• Qt framework
• 7 publishers
• 37 subscribers

github.com/KDAB/hotspot
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How would an automated 
technique recognize 
design abstractions from 
code?

• Rules or classifiers?
• Based on what data?
• How generalizable can 

you get?

From Code to Design Fragment
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Rules-Based Predictor

Rules are a reasonable approach for some abstractions in commonly used 
frameworks.
Work on rules-based predictors is work towards automating data labeling.
As we develop more precise definitions for communication styles, 
we will identify how different styles may be better characterized using 
different kinds of predictors.

Cypher Query Language. 
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General Solution to the Design-Code 
Abstraction Gap

Automated Design Conformance during Continuous Integration
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Expanding on the Conformance Checker Prototype

In the prototype, we used 
clues from frameworks to 
label constructs in multiple 
projects.

As we work towards 
generalizing techniques for 
finding architecture styles 
more broadly, we look to 
lower level realizations.
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Formalizing and Differentiating Styles 

Another challenge to predicting styles is that many styles can look similar, lack 
specificity and formalism in definition, or cannot be characterized by looking at 
only one source of information.

A 2-node peer-to-peer 
configuration can look 
similar to client-server. 

?
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Extracting and Connecting Information Across a Code Base

app_method(p1, p2) {
…
frame_method(p1)

… 
}

frame_method(p1) {
…
stdlib_method(p1)

… 
}

Calls from application 
source use services 
implemented in common 
frameworks.

In turn, calls from 
frameworks are built on 
top of programming 
language libraries (e.g., 
C++ standard library) 
and operating system.  
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Indicators of Properties Exist In Multiple Files

app_method(p1, p2) {
…
app_data_meth(p2)
…
frame_method(p1)
…

}

frame_method(p1,p2){
…
stdlib_method(p1,             

block=true)
frame_indirect(p2) 
…

}

stdlib_method(p1, 
block){

…
open_socket(p1,               

block)
…

}

calls calls

data = passing synchrony = true transport = socket

routing = indirect

APPLICATION FRAMEWORK LIBRARY
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Accumulating Indicators in One Representation



21Automated Design Conformance during Continuous Integration
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Bridging the Design – Code Abstraction Gap
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Next Steps: More Projects, More Styles
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