
1Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Untangling the Knot:
Automating Software Isolation

James Ivers

November 8, 2021

2Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

DM21-0908

3Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Software Is an Essential Building Material

Our ability to work with software
significantly influences project cost,
schedule, time to field, and other
concerns.

The ability to efficiently build, change,
and evolve software depends on its
architecture and how that architecture is
realized in code.

Architectures that are well aligned with
needs allow faster changes with greater
confidence.

4Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Software Is Never Done

Change is inevitable
• Requirements change
• Business priorities change
• Programming languages change
• Deployment environments change
• Technologies and platforms change
• Interacting systems change
• ...

To adapt to such changes, we need to
periodically improve software structure
(architecture) to match today’s needs.

5Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Software Structure Becomes a Barrier to Software Evolution

Many evolution projects start with a
common problem – isolating software:

• Reusing capability in a different system or
rehosting on a different platform

• Factoring out common capability as a
shared asset

• Decomposing a monolith into more
modular code

• Migrating capabilities to a cloud or
microservice architecture

6Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Refactoring Promises to Help

Refactoring is a known technique for
improving the structure of software, but
it is typically a labor-intensive process
in which developers must

• figure out where to make changes
• figure out which refactoring(s) to use
• implement refactorings by rewriting

code
Many modern IDEs
support code refactoring

Few tools recommend
how to refactor code

7Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

We surveyed practitioners to understand how large-scale refactoring is
performed today.
Large-scale refactoring involves pervasive changes across a code base
or extensive changes to a substantial element of the system (e.g., greater than
10K LOC).

Our Focus: Large-Scale Refactoring

8Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Organizations Often Defer Large-Scale Refactoring

70% of the respondents
wanted to perform large-
scale refactoring, but did
not do so.

These reasons match what
we have heard from many
different organizations over
many years.

New features were prioritized instead

Anticipated cost was too high

Too disruptive to other development efforts

Could not be completed quickly enough to meet other goals

Staff with sufficient knowledge and skills were not available

Risk of errors during refactoring was too high

Anticipated value was too low

9Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Do Today's Tools Support Large-Scale Refactoring?

Our survey results
show that

• developers rely heavily on
their typical development
tools, custom scripts, and
manual efforts

• few tools cited support
deciding where and how
to refactor code used

• specialized refactoring
tools are not commonly
used

10Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Our Solution: An Automated Refactoring Assistant

We have developed an automated refactoring assistant for developers that improves
software structure for several common forms of change that involve software
isolation:

• Solves project-specific problems
• Uses a semi-automated approach
• Allows refactoring to be completed in less than 1/3 of the time required by manual

approaches

Project-Specific Goal

Source Code

Recommended
Refactorings

Refactoring
Assistant

J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried. Next Generation Automated Software Evolution: Refactoring at Scale. 28th Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20). 2020.

11Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Key Concept – Problematic Couplings

Only certain software dependencies
interfere with any particular goal.

For example, if we want to reuse a feature:

• The core problem is dependencies (red
lines) from software being reused to
software that isn't

• All other dependencies are irrelevant to
the goal, allowing us to focus our
analysis and search for solutions

This insight enables us to apply search-
based software engineering techniques
and treat this as an optimization problem.

12Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

SEI’s Automated Refactoring Assistant Prototype

Search
Algorithm

Graph
Representation

Formalized
Refactorings

Fitness
Functions

static code analysis to
generate an intermediate
representation,

A multi-objective genetic
algorithm (based on
NSGA-II) that uses ... Fowler-style refactorings that

have been formalized in terms
of the graph (13 so far), and

a collection of measures of the
"goodness" of solutions for
different objectives (6 so far)

... to solve more than 80%
of software isolation
problems.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002.

13Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

When optimizing for
multiple objectives, there
is no single best answer;
instead we generate
options that represent
trade-offs among
competing objectives.

This allows developers to
choose the trade-offs that
best match their needs.

Pareto-Optimal Solutions

Solutions that solve most of
the problem at the cost of
adding a lot of code

Compromise solutions
(solving more than 3/4 of
the problem while less
than doubling code size) Solutions that add very

little code at the cost of
solving much less of the
problem

14Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Generating Refactoring Recommendations

15Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager,
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.AutoU
pdateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) -> new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(),
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter with a
type of the original declaring class. Also, update all references to this within the
method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to allow
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to allow
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public to
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

The refactoring assistant
generates step-by-step
instructions that

• are independently
reviewable

• can be selectively
applied

Refactoring Recommendations - 1

16Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager,
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.AutoU
pdateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) -> new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(),
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter with a
type of the original declaring class. Also, update all references to this within the
method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to allow
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to allow
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public to
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

Solves the problem of
recommending which
refactorings to apply.

• Uses a vocabulary
familiar to developers

• References refactorings
that many modern IDEs
implement

Refactoring Recommendations - 2

17Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager,
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.
AutoUpdateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) ->
new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(),
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter with a
type of the original declaring class. Also, update all references to this within the
method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to allow
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to allow
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public to
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

Solves the problem of
recommending where to
apply the refactorings.

• Provides clear
parameters identifying
where each refactoring
should be applied

Refactoring Recommendations - 3

18Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager,
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.AutoUp
dateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) -> new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(),
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter
with a type of the original declaring class. Also, update all references to this
within the method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public
to allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

Provides context-specific
instructions on
secondary changes that
enable the refactoring.

Refactoring Recommendations - 4

19Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Results from 14 Open Source Scenarios

Mean PC Reduction = 87.9%
Mean Original PC Counts = 1,419.5

Solution Completeness Solution Quality

Mean Acceptable Refactorings = 84.6%

20Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Scalability of Our Solution

Scales to at least 1.2M SLOC of C# code
Search time is measurable in minutes to hours on a typical development laptop

21Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Coming Soon

Extend analysis to
refactor Java code
(ETA – early 2022)

Build on our refactoring dependency theory to
• speed algorithm convergence
• help users understand and explore

recommended solutions

C. Abid, J. Ivers, T. Ferreira, M. Kessentini, F. Kahla, I. Ozkaya. Intelligent Change
Operators for Multi-Objective Refactoring. Intl. Conference on Automated
Software Engineering (ASE). 2021.

Incorporate constraint
mechanisms to generate
solutions that accommodate
common development
constraints

22Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Next-Generation Automation for Software Evolution

We are applying AI for Software
Engineering to bend the cost curve
for software evolution

• significantly reduce the time, cost, and
disruption involved in refactoring software

• help organizations evolve software
proactively and as frequently as needed
rather than reactively or as a last resort

Contact us at sei-knot@sei.cmu.edu if
you are interested in partnering with us.

J. Ivers, I. Ozkaya, R. L. Nord. Can AI Close the Design-Code
Abstraction Gap? Software Engineering Intelligence Workshop 2019,
co-located with Intl. Conference on Automated Software Engineering.

23Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

The Knot Team

James Ivers

Robert NordIpek Ozkaya

Chris Seifried

• Mario Benítez

• Vaughn Coates

• Andrew Kotov

• Reed Little

• Craig Mazzotta

• Scott Pavetti

• Scott Sinclair

• Jake Tannenbaum

Research Collaborators
• Thiago Ferreira (University of Michigan, Assistant Professor)
• Clem Izurieta (Montana State University, Associate Professor)
• Marouane Kessentini (University of Michigan, Associate Professor)
• Chris Timperley (Carnegie Mellon University, Systems Scientist)

Students
• Chaima Abid (University of Michigan)
• Gavin Austin (Montana State University)
• Jared Frank (University of Pittsburgh)
• Carly Jones (Carnegie Mellon University)
• Katie Li (Carnegie Mellon University)
• Red Rajput (Carnegie Mellon University)
• Amy Tang (Carnegie Mellon University)
• Jeff Yackley (University of Michigan)

SEI Team External Collaborators

	Slide Number 1
	Slide Number 2
	Software Is an Essential Building Material
	Software Is Never Done
	Software Structure Becomes a Barrier to Software Evolution
	Refactoring Promises to Help
	Our Focus: Large-Scale Refactoring
	Organizations Often Defer Large-Scale Refactoring
	Do Today's Tools Support Large-Scale Refactoring?
	Our Solution: An Automated Refactoring Assistant
	Key Concept – Problematic Couplings
	SEI’s Automated Refactoring Assistant Prototype
	Pareto-Optimal Solutions
	Generating Refactoring Recommendations
	Refactoring Recommendations - 1
	Refactoring Recommendations - 2
	Refactoring Recommendations - 3
	Refactoring Recommendations - 4
	Results from 14 Open Source Scenarios
	Scalability of Our Solution
	Coming Soon
	Next-Generation Automation for Software Evolution
	The Knot Team

