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Software Is an Essential Building Material

Our ability to work with software 
significantly influences project cost, 
schedule, time to field, and other 
concerns.

The ability to efficiently build, change, 
and evolve software depends on its 
architecture and how that architecture is 
realized in code. 

Architectures that are well aligned with 
needs allow faster changes with greater 
confidence.
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Software Is Never Done

Change is inevitable
• Requirements change
• Business priorities change
• Programming languages change
• Deployment environments change
• Technologies and platforms change
• Interacting systems change
• ...

To adapt to such changes, we need to 
periodically improve software structure 
(architecture) to match today’s needs.
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Software Structure Becomes a Barrier to Software Evolution

Many evolution projects start with a 
common problem – isolating software:

• Reusing capability in a different system or 
rehosting on a different platform 

• Factoring out common capability as a 
shared asset 

• Decomposing a monolith into more 
modular code 

• Migrating capabilities to a cloud or 
microservice architecture 
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Refactoring Promises to Help

Refactoring is a known technique for 
improving the structure of software, but 
it is typically a labor-intensive process 
in which developers must

• figure out where to make changes 
• figure out which refactoring(s) to use
• implement refactorings by rewriting 

code
Many modern IDEs 
support code refactoring

Few tools recommend 
how to refactor code
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We surveyed practitioners to understand how large-scale refactoring is 
performed today.
Large-scale refactoring involves pervasive changes across a code base 
or extensive changes to a substantial element of the system (e.g., greater than 
10K LOC).

Our Focus: Large-Scale Refactoring
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Organizations Often Defer Large-Scale Refactoring

70% of the respondents 
wanted to perform large-
scale refactoring, but did 
not do so. 

These reasons match what 
we have heard from many 
different organizations over 
many years.

New features were prioritized instead

Anticipated cost was too high

Too disruptive to other development efforts

Could not be completed quickly enough to meet other goals

Staff with sufficient knowledge and skills were not available

Risk of errors during refactoring was too high

Anticipated value was too low
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Do Today's Tools Support Large-Scale Refactoring?

Our survey results 
show that

• developers rely heavily on 
their typical development 
tools, custom scripts, and 
manual efforts

• few tools cited support 
deciding where and how 
to refactor code used

• specialized refactoring 
tools are not commonly 
used
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Our Solution: An Automated Refactoring Assistant

We have developed an automated refactoring assistant for developers that improves 
software structure for several common forms of change that involve software 
isolation:

• Solves project-specific problems
• Uses a semi-automated approach
• Allows refactoring to be completed in less than 1/3 of the time required by manual 

approaches

Project-Specific Goal

Source Code

Recommended
Refactorings

Refactoring 
Assistant

J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried. Next Generation Automated Software Evolution: Refactoring at Scale. 28th Joint 
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20). 2020.
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Key Concept – Problematic Couplings 

Only certain software dependencies 
interfere with any particular goal.

For example, if we want to reuse a feature:

• The core problem is dependencies (red 
lines) from software being reused to 
software that isn't

• All other dependencies are irrelevant to 
the goal, allowing us to focus our 
analysis and search for solutions

This insight enables us to apply search-
based software engineering techniques 
and treat this as an optimization problem.
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SEI’s Automated Refactoring Assistant Prototype

Search 
Algorithm

Graph 
Representation

Formalized 
Refactorings

Fitness 
Functions

static code analysis to 
generate an intermediate 
representation, 

A multi-objective genetic 
algorithm (based on 
NSGA-II) that uses ... Fowler-style refactorings that 

have been formalized in terms 
of the graph (13 so far), and

a collection of measures of the 
"goodness" of solutions for 
different objectives (6 so far)

... to solve more than 80% 
of software isolation 
problems.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective 
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002.
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When optimizing for 
multiple objectives, there 
is no single best answer; 
instead we generate 
options that represent 
trade-offs among 
competing objectives.

This allows developers to 
choose the trade-offs that 
best match their needs.

Pareto-Optimal Solutions

Solutions that solve most of 
the problem at the cost of 
adding a lot of code

Compromise solutions 
(solving more than 3/4 of 
the problem while less 
than doubling code size) Solutions that add very 

little code at the cost of 
solving much less of the 
problem



14Untangling the Knot: Automating Software Isolation
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Research Review 2021

Generating Refactoring Recommendations
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Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager, 
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.AutoU
pdateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) -> new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(), 
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter with a 
type of the original declaring class.  Also, update all references to this within the 
method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to allow 
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to allow 
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public to 
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

The refactoring assistant 
generates step-by-step 
instructions that 

• are independently 
reviewable

• can be selectively 
applied

Refactoring Recommendations - 1
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Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager, 
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.AutoU
pdateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) -> new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(), 
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter with a 
type of the original declaring class.  Also, update all references to this within the 
method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to allow 
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to allow 
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public to 
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

Solves the problem of 
recommending which 
refactorings to apply.

• Uses a vocabulary 
familiar to developers

• References refactorings 
that many modern IDEs 
implement

Refactoring Recommendations - 2
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Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager, 
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.
AutoUpdateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) -> 
new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(), 
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter with a 
type of the original declaring class.  Also, update all references to this within the 
method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to allow 
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to allow 
Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public to 
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

Solves the problem of 
recommending where to 
apply the refactorings.

• Provides clear 
parameters identifying 
where each refactoring 
should be applied

Refactoring Recommendations - 3
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Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager, 
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Library.AutoUpdater.AutoUp
dateStrategy), InstalledBaseDir, INSTALLED_BASE_DIR}) -> new_class_name_1

> Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEvent(), 
Duplicati.Server.Database.Connection)

> Convert the instance method to a static method by adding a new parameter 
with a type of the original declaring class.  Also, update all references to this 
within the method to use the new parameter.

> Convert the member Duplicati.Server.EventPollNotify.m_eventNo to public to 
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_lock to public to 
allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.

> Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to public 
to allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)

Provides context-specific 
instructions on 
secondary changes that 
enable the refactoring.

Refactoring Recommendations - 4
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Results from 14 Open Source Scenarios

Mean PC Reduction = 87.9%
Mean Original PC Counts = 1,419.5

Solution Completeness Solution Quality

Mean Acceptable Refactorings = 84.6%
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Scalability of Our Solution

Scales to at least 1.2M SLOC of C# code
Search time is measurable in minutes to hours on a typical development laptop
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Coming Soon

Extend analysis to 
refactor Java code 
(ETA – early 2022)

Build on our refactoring dependency theory to
• speed algorithm convergence
• help users understand and explore 

recommended solutions

C. Abid, J. Ivers, T. Ferreira, M. Kessentini, F. Kahla, I. Ozkaya. Intelligent Change 
Operators for Multi-Objective Refactoring. Intl. Conference on Automated 
Software Engineering (ASE). 2021.

Incorporate constraint 
mechanisms to generate 
solutions that accommodate 
common development 
constraints
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Next-Generation Automation for Software Evolution

We are applying AI for Software 
Engineering to bend the cost curve 
for software evolution

• significantly reduce the time, cost, and 
disruption involved in refactoring software

• help organizations evolve software 
proactively and as frequently as needed 
rather than reactively or as a last resort

Contact us at sei-knot@sei.cmu.edu if 
you are interested in partnering with us.

J. Ivers, I. Ozkaya, R. L. Nord. Can AI Close the Design-Code 
Abstraction Gap? Software Engineering Intelligence Workshop 2019, 
co-located with Intl. Conference on Automated Software Engineering.
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