
1DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE and ACR
Static Analysis Classification and Automated Code Repair

For SwA CoP/NNSA
September 2021

Dr. Lori Flynn
Dr. William Klieber

2DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position,
policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS"
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM21-0791

3DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static
Analysis Results During CI
with SCAIFE modular static analysis classification system

Dr. Lori Flynn (PI)

SEI Team:
Matt Sisk
Ebonie McNeil
David Svoboda
Joseph Yankel
Tyler Brooks
Dustin Updyke
Jeffrey Mellon
Rhonda Brown
Lyndsi Hughes (tester)
Joseph Sible (tester)
Wei-ren Murray (tester)

4DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

s
cs

Analyzer

Analyzer

Analyzer

Codebases

Today

Goal

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

Continuous Integration (CI) – optional Systems
that
precisely and with high recall, classify at least
as many manually-adjudicated meta-alerts as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

Problem: too many static analysis alerts
Solution: automate handling

Alerts
(Meta-alerts)

A meta-alert is a static analysis result for
a particular line number, filepath, and
code flaw condition (e.g., CWE-190).

SCAIFE
classification system

5DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

s
cs

Analyzer

Analyzer

Analyzer

Codebases

Today

Goal

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

CI-optional systems that
precisely and with high recall, classify at least
as many manually-adjudicated meta-alerts as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

Alerts
(Meta-alerts)

SCAIFE
classification system

Problem: too many static analysis alerts
Solution: automate handling

A meta-alert is a static analysis result for
a particular line number, filepath, and
code flaw condition (e.g., CWE-190).

6DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE Static Analysis Classifiers Detail

Labeled static analysis meta-alerts used to create classifiers:
• Manually adjudicated meta-alerts (true positive, false positive)
• Test suites (e.g., Juliet): SCAIFE automatically adjudicates meta-alerts
• User chooses labeled data sets, classifier, active learning, and other options

Modular ability to add different types of classifiers, active learning, and hyper-parameter
optimization methods.
Built-in options:
• Classifiers: XGBoost, Random Forest, LightGBM
• Active Learning (adaptive heuristics): Similarities, K-Nearest Neighbors, and Label

Propagation
• Hyper-parameter optimization: Bayesian Optimization

Designed for use by machine learning novices, with settings that can be tweaked by experts

7DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE Classification System

Full SCAIFE system includes all 5 modules
Modular system designed to work with different user interfaces and static analysis tools

• SARIF static analysis format
• SCARF format (DHS SWAMP)
• Various tools and versions, with standard method for adding new tools

Use SCAIFE for a single code version or a codebase in a CI system
• CI system: updates to code and static analysis for the new code version

Designed to be used in a wide variety of systems, with many other tools

8DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

FY20-21: Rapid Adjudication of Static Analysis Results
During CI

• Issue addressed: It takes too much time to
adjudicate (i.e., audit) static analysis meta-alerts
during continuous integration (CI).

• Novel approach: During CI builds, use classifiers
with precise cascading and CI/CD features.

9DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Source Code
Repository

CI Server

Development &
Test Teams

Source Code
Check-In

Rapid Adjudication of Static Analysis
(SA) Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

CI
Workflow

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Alert: An SA warning (with a tool checker ID,
line #, filepath, message)
AlertCondition: An alert mapped to a code
flaw taxonomy item (e.g., CWE-190)
Meta-alert: mapped to by the set of
alertConditions that differ only by checker ID.
Adjudication and classification at the meta-
alert level.

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

10DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Source Code
Repository

CI Server

Development &
Test Teams

Source Code
Check-In

CI
Workflow

11DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Source Code
Repository

CI Server

Development &
Test Teams

Source Code
Check-In

CI
Workflow

12DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Source Code
Repository

CI Server

Development &
Test Teams

Source Code
Check-In

CI
Workflow

13DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Source Code
Repository

CI Server

Development &
Test Teams

Source Code
Check-In

CI
Workflow

14DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE has 2 Types of Meta-Alert Adjudication Cascading

• For code versions 1 and 2, can a manual adjudication (e.g., true, false) for a
meta-alert from v1 be applied to a meta-alert for code v2?

• Imprecise cascading happens on a per-file analysis and uses regular expression
and/or line numbers.

• Precise cascading means analysis across a whole program using control flow,
data flow, and type flow.

CWE-190

CWE-119

CWE-398

CWE-758

CWE-190

CWE-128

CWE-119

CWE-398

CWE-910

CWE-908
Code v1

Code v2Tool X meta-alerts
(adjudicated FP)

Tool X meta-alerts,
diff cascaded FPs

Same, but precisely
cascaded FPs

CWE-190

CWE-398

CWE-128

CWE-119

CWE-398

CWE-910

CWE-908

15DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE Architecture
• SEI SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator tools
• Single static analysis

tools

Any static analysis tool can
instantiate APIs to become a
UI Module. For example

Goal: Enable practical automated classification, so all meta-alerts can be addressed

SCAIFE’s modular
architecture (i.e., efficient
integration with many tools
and systems) now
enables classifier use
during continuous
integration.

The OpenAPI v3 SCAIFE
API definition enables
automated code
generation in many code
languages

Modifications for Integration with CI Systems

16DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

FY21 Select Artifacts
• Adjudication cascading

- Diff-based cascading integrated in SCAIFE
- Generated diff-based cascading test data for comparison with precise

cascading
- Collaboration with Dr. Le’s team from Iowa State University:

• Precise cascader development
• Generated test data for precise and diff-based cascading

• SCAIFE v2.0.0 release
- automatically uses CI update data (code, static analysis) to update

SCAIFE projects
- Includes hands-on demos to walk users through it on their own system

• 4 demos: One for use with full CI systems, others for use without CI
systems

- Additional training demos, code, and documentation enhancements
• First Dist D SCAIFE release: SCAIFE v2.0.1

Release ok for DoD contractors, now!
(Previously Dist F: only for 5 DoD orgs)

scaife.online.2.0.0.tar.gz (138 MB)

scaife.online.2.0.1.tar.gz (115 MB)

17DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

FY21 Select Artifacts
• Paper "Test suites as a source of training data for static analysis alert classifiers" by

Lori Flynn, William Snavely, and Zachary Kurtz to ICSE-associated Conference on
Automation of Software Test (AST) 2021 https://conf.researchr.org/home/icse-
2021/ast-2021 and video https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=737855

• SCAIFE v3 release (this week)
• Contains much-enhanced performance metrics collection:

- Experiment mode, auto-setup experiments with configuration files + datasets, collect metrics, auto-end,
and export data

- Metrics include (among others): classifier precision and recall, counts of adjudicated vs. high-confidence
predicted, and key step latencies, CPU use (max, avg), bandwidth use (max, avg), memory use (max, avg)

• Java test suites now fully usable by SCAIFE
• CI updates in SCAIFE include Stats module and new classifier predictions

• SCAIFE release test results and analysis:
• SEI CI experts did the CI demo, provided feedback (Lyndsi Hughes and Joe Sible)
• External collaborators started testing SCAIFE v2 and providing feedback
• Next (hopefully FY21!): SCAIFE v3 collaborator testing, analysis of test results

• GitHub publications of SCAIFE API https://github.com/cmu-sei/SCAIFE-API
(Sept’21 release soon)

• GitHub publications of SCAIFE UI module (SCALe) code at
https://github.com/cmu-sei/SCALe/tree/scaife-scale (Sept’21 release soon)

scaife.online.3.0.0.tar.gz

https://conf.researchr.org/home/icse-2021/ast-2021
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=737855
https://github.com/cmu-sei/SCAIFE-API
https://github.com/cmu-sei/SCALe/tree/scaife-scale

18DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Current Work
• Writing research papers

• Gathering and analyzing test data.

• Interested potential testers welcome!

• Special report for collaborators

19DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Detail on testing
• Interested potential testers welcome!

Involves
1. SCAIFe startup (docker-compose

command on Linux or Mac machine)

Start SCAIFE

20DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Detail on testing
• Interested potential testers welcome!

Involves
1. SCAIFe startup (docker-compose

command on Linux or Mac machine)
2. Select experiment from list (rest auto-

fills)

Select Experiment in Drop-Down

21DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Detail on testing
• Interested potential testers welcome!

Involves
1. SCAIFe startup (docker-compose

command on Linux or Mac machine)
2. Select experiment from list (rest auto-

fills)
3. Adjudicate meta-alerts, working from

top of list. (list re-orders after
adjudications)

Adjudicate Meta-alerts (Do Top of List)

22DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Detail on testing
• Interested potential testers welcome!

Involves
1. SCAIFe startup (docker-compose

command on Linux or Mac machine)
2. Select experiment from list (rest auto-

fills)
3. Adjudicate meta-alerts, working from

top of list. (list re-orders after
adjudications)

4. Send exported 3 files back if possible,
else just provide qualitative feedback
on testing.

Experiment End: Exports 3 Files

23DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved
for public release and unlimited distribution.

Automated Code Repair to
Ensure Spatial Memory Safety

Dr. Will Klieber(PI) SEI Team:
Ryan Steele
Matt Churilla
David Svoboda
Mike McCall
Ruben Martins (CMU SCS)

24DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Automated Code Repair (ACR) for Memory Safety

Problem: Software vulnerabilities constitute a major, growing threat.

• Spatial memory violations are among the most common and most
severe types of vulnerabilities.
- 15% of CVEs in the NIST NVD and 24% of critical-severity CVEs.
- iPhone iOS CVE-2019-7287 (exploited by Chinese government, according to

https://techcrunch.com/2019/08/31/china-google-iphone-uyghur/)
- Android Stagefright (2015)

https://techcrunch.com/2019/08/31/china-google-iphone-uyghur/

25DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Automated Code Repair (ACR) tool as a black box

Input: Buildable
codebase written in C

Output: Repaired
source code that is still
human-readable and
maintainable

printf(
name);

printf(
"%s",
name);

ACR Tool

Solution: Automatically repair source code to assure spatial memory safety.
Abort program (or call error-handling routine) before memory violation.

Approach: Repair program to use fat pointers to track bounds and insert a
bounds check before memory accesses.

26DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Why repair at the source-code level?

Repair of source code Repair as a compiler pass

Easily audited (if desired). Must trust the tool.

Repairs can easily be tweaked to
improve performance, if necessary.

Difficult to remediate performance
issues caused by repair.

Changes to source code are frequent
and easily handled.

Changes to the build process may be
more difficult, more error-prone, and
create unwanted dependencies.

Okay to do slow, heavy-weight static
analysis; produces a persistent artifact.

Slowing down every build is not okay.

27DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Fat pointers
We replace raw pointers with fat pointers:
• A fat pointer is a struct that includes the pointer itself as well as bounds information.
• Before dereferencing a fat pointer, a bounds check is performed.
• For each pointer type T*, we introduce a fat-pointer type defined as follows:

struct FatPtr_T {
T* rp; /* raw pointer */
char* base; /* of allocated memory region */
size_t size; /* of allocated memory region, in bytes */

};

Fattening of pointers has been performed as a compiler pass:
• Todd Austin et al. “Efficient detection of all pointer and array access errors.” PLDI, 1994.
• Wei Xu et al. “An efficient and backwards-compatible transformation to ensure memory safety of C

programs.” ACM SIGSOFT, 2004.

28DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Fat pointer example

h e l l o w o r l d \0

p
Original:

Repaired: p.rp
p.base
(p.base + p.size - 1)

29DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Example of tool output
Original Source Code Repaired Source Code

1 1 #include "fat_header.h"

2 2 #include "fat_stdlib.h"

3 #define BUF_SIZE 256 3 #define BUF_SIZE 256

4 char nondet_char(); 4 char nondet_char();

5 5
6 int main() { 6 int main() {

7 char* p = malloc(BUF_SIZE); 7 FatPtr_char p = fatmalloc_char(BUF_SIZE);

8 char c; 8 char c;

9 while ((c = nondet_char()) != 0) { 9 while ((c = nondet_char()) != 0) {

10 *p = c; 10 *bound_check(p) = c;

11 p = p + 1; 11 p = fatp_add(p, 1);

12 } 12 }

13 return 0; 13 return 0;

14 } 14 }

30DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Performance overhead
Full Repair: Guard every memory
access.
Partial Repair: Run static-analysis
tool and insert bounds checks only
for memory accesses flagged by
the static analyzer.

0 50 100 150 200

bzip2

mcf

sjeng

libquantum

Full Repair Partial Repair Original

Small performance overhead:
• 3% for libquantum
• 9% for sjeng
• 3% for bzip2

Still large overhead for programs
with many pointers:

• 62% for mcf
(Currently we still fatten all pointers,
even if we never use the bounds.)

31DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Limitations

We cannot guarantee memory safety in the presence of:
• Non-standard pointer tricks (e.g., XOR-linked lists)
• Reuse of memory for different types (except via unions)
• Concurrency

- Race conditions can cause memory corruption

• External code that accesses program memory
- If the program’s data structures are accessed by external binary code,

the pointers inside them cannot be fattened.
- We can identify such pointers using a whole-program points-to analysis

with an allocation-site abstraction.

32DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved
for public release and unlimited distribution.

Decompilation for Binary
Software Assurance

Dr. Will Klieber(PI) SEI Team:
David Svoboda
Ruben Martins (CMU SCS)

33DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Decompilation for Binary Software Assurance (FY21—22)
• Goal: Increase software assurance of components available only in binary form.

- Decompile and perform static analysis on decompiled code.
- Make localized repairs to functions of the binary.

• We are adapting an existing open-source decompiler (Ghidra) to produce decompiled
code suitable for static analysis and repair.
- Existing decompilers were developed for aiding manual reverse engineering.
- They were not designed to produce recompilable code.
- Gap: Decompiled code often has semantic inaccuracies and syntactic errors.

• Key technical steps:
- Determine which individual functions have been correctly decompiled.
- Run static analysis and localized repair on correctly decompiled functions.
- Recombine repaired functions with the original binary files (e.g., using DDisasm).

34DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Decompilation for Binary Software Assurance (continued)

• A perfect decompilation of the entire binary isn’t necessarily required to get significant
benefit, as long as enough relevant functions can be correctly decompiled.

• Main contributions of our work:
- We develop a semantic-equivalence checker to determine which individual functions are

correctly decompiled.
- We improve the syntactic and semantic correctness of decompiler output. We will offer our

improvements to the mainline branch of Ghidra used by DoD.
- Measure how well static analysis and automated repair work on decompiled code.

• This work, if successful, will enable DoD to find and fix potential vulnerabilities in binary
code that might otherwise be cost-prohibitive to investigate or repair manually.

35DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

State of the Art – Recompilation of decompiled code

• Zhibo Liu and Shuai Wang. “How far we have come: testing decompilation correctness
of C decompilers.” ACM Int’l Symposium on Software Testing & Analysis (ISSTA), July
2020.

- Tested synthetic code without input or nondeterminism.

- Ghidra: out of 2504 test cases (averaging around 250 LoC), 93% were correctly decompiled.

- Only unoptimized code. No structs, unions, arrays, or pointers.

36DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Pipeline for use on in-the-wild binaries

Decompiler

Clang

Original
binary Analysis

and/or
Repair

Semantic equivalence checker

Decompiled
code

Recompiled
binary

Repaired source

Analysis results

Filter
Correctly

decompiled
functions

37DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Code Recompilation
Project

Source
Functions

Recomp
Functions Percent

dos2unix 40 17 43%
jasper 725 377 52%
lbm 21 13 62%
mcf 24 18 75%
libquantum 94 34 36%
bzip2 119 80 67%
sjeng 144 93 65%
milc 235 135 57%
sphinx3 369 183 50%
hmmer 552 274 50%
gobmk 2,684 853 32%
hexchat 2,281 1,106 48%
git 7,835 3,032 39%
ffmpeg 21,403 10,223 48%
Average 52%

SPEC 2006
Benchmarks

The table shows the percentage
of source-code functions that are
extracted as recompilable (i.e.,
syntactically valid) C code.

38DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Types of syntactic errors

Count Error type

609 Request for member in something not a structure or union

706 Invalid operands to binary operator

910 Other

2,972 Use of undeclared identifier

1,224 void value not ignored as it ought to be

1,153 too many arguments to function

3,434 too few arguments to function

11,008 Total

39DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE-ACR Integration

40DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Integrated Static Analysis Classification and Automated
Code Repair for CI
Problem: DoD organizations that develop code or analyze code security need to make code more secure, with as little costly
manual effort as possible. Automated code repair (ACR) tools can fix some code flaws, and automated SA classifiers can
save manual work adjudicating static analysis (SA) results, but they may not work well together as-is.

Solution: A system that can modularly incorporate a wide variety of SA classifiers and ACRs that increases the percent of high-
severity SA results1 addressed automatically after applying ACR, designed for CI. “Automatically” means “automatically repaired”
or “automatically classified with confidence 70% or greater” (provided that the classifier has a precision and recall 70% or greater).

Approach: Building on what we’ve learned and the tools from the previous 6 years of Line-funded projects (SEI ACR4 and
SCAIFE2), we will develop a modularly integrated SCAIFE-ACR system for CI, then use it to measure impact of SEI ACR on
the percent of high-severity SA results addressed automatically. We test it with open-source code and collaborators use it in their
systems on their code. Also, novel use of ACR fix data to improve classifier predictions, and measure effectiveness with classifier
precision and recall comparisons.

1. High-severity SA results: warnings for top 25 dangerous CWE and CERT coding rules with severity level 3
2. SCAIFE: modular static analysis classification system with GUI developed by L. Flynn’s SEI projects
3. ACR: uses a semantic representation of code to fix code flaws
4. SEI ACR: ACR tooling for memory safety in C developed by W. Klieber’s SEI projects

41DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

N/A 7000 PREVIOUS 80 CWE-125 FALSE 10 dir4/FileX

ACR
possible? Priority Auto-Repair?

Manual
Adjudication

Classifier
Confidence

True (%) Condition
Auto-
Adjudication? Line Filepath

yes 8885 YES 88 CWE-125 N/A 10 dir4/FileX

Auto-Labeled ACR Fixes

ACR
possible? Priority Auto-Repair?

Manual
Adjudication

Classifier
Confidence

True (%) Condition
yes 8890 YES CWE-190
yes 8889 NO INT31-C
yes 8888 YES CWE-191
yes 8887 YES CWE-79
yes 8886 YES CWE-787
yes 8885 YES CWE-125

1. An ACR fix is made to the code (was version 1, now v2 in new branch)

2. The ACR code fixes (v2) are committed to the remote repository. Then, the CI server builds
and tests the code, and sends results back to the development+test team and to SCAIFE.

3. SCAIFE fuses SA results into meta-alerts. If last code push is an auto-repair, SCAIFE checks if a
meta-alert for the repaired condition re-appears on matched lines* of repaired code. If yes, it
auto-labels the meta-alert False if fix marked ‘reliable’ by the ACR. New feature “auto-repair” for
classifier. No ACR auto-labels True.)

Code v1, ACR-fixed meta-alert

Code v2, same location and condition: meta-alert auto-labeled FALSE

4. The new labeled data (meta-alert auto-labeled false and
associated data) is used to improve the SA classifier predictions for
all remaining not-yet-adjudicated meta-alerts, using adaptive
heuristics and/or occasional classifier retraining.

* Lines may be matched using POSIX diff program, possibly enhanced with extra matching information related to
the ACR system. E.g., a memory access that previously took 1 line might be expanded by the ACR to take 3 lines
in one file plus a new function in another file, and any of those locations would count as a match.

SEI ACR does not prove the code v1 meta-alert was True, but it fixes many memory safety violations

42DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

ACR & SCAIFE Meta-Alert Classification
Source Code

Repaired Source Code

SCAIFE split into 3 categories (e-TP, e-FP, I) of prioritized meta-alerts

SCAIFE meta-alert classification
(Run static analysis and other tools, use data archives, active learning, etc.)

Automatic Code Repair
(option 2 or 3)

Meta-alert
adjudication

Manual
code repair
(developer)

Ignore

Feature development & bugfixes

Automatic Code
Repair (option 1)

• ACR option 1: Make all
possible automatic repairs
(worse runtime overhead,
better safety)

• ACR option 2: Only repairs
higher-priority meta-alerts
(less runtime overhead, but
might leave unfixed vuls)

• ACR option 3: Analyst views
potential repairs for high-
priority meta-alerts and
approves or rejects each
individually.Pull Request (PR)

PR

One path down could happen:
• during one continuous

integration build cycle (cycle
until build passes, then
repeat for new builds)

• during a code security
analysis+fix

43DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

ACR & SCAIFE Meta-Alert Classification
Source Code

Repaired Source Code

SCAIFE split into 3 categories (e-TP, e-FP, I) of prioritized meta-alerts

SCAIFE meta-alert classification
(use data archives, active learning, occasionally retrain classifier, etc.)

Automatic Code Repair
(human decides)

Meta-alert
adjudication

Manual
code repair
(developer)

Ignore

Feature development & bugfixes

Example: SCAIFE and ACR
option 3 (manual
decisions)

Pull Request (PR)

PR

Repair data for
retraining, active
learning

Adjudication
data

ACR analysis-only Parallel manual effort
possible:
• ACR decisions
• manual code repair
• meta-alert adjudication

SCAIFE run static analyses, process
results, cascade manual adjudications

44DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

ACR & SCAIFE: Latency Impacts on Design
One vertical flow could happen:
a. for a CI build, with SCAIFE / ACR results that the CI system can use
b. during a code security analysis + fix
c. for one code commit, with manual repairs/analyses working down priority lists

• ACR option 1: Make all possible automatic repairs
(worse runtime overhead, better safety)

• ACR option 2: Only repairs high-priority meta-alerts
(less runtime overhead, but might leave unfixed vuls)

• ACR option 3: Analyst views potential ACR repairs for
high-priority meta-alerts and approves or rejects each
individually.

• For fast ACR and SCAIFE analyses, the analyses (and potential repairs)
could be potentially be done for each CI build.

• For slower ACR and SCAIFE analyses, (e.g., for large codebases) the
envisioned design would have the analysis be done on a code version
(e.g., on a particular commit to a repository). After, ACR (1,2, or 3)
and SCAIFE “I” adjudications and “e-TP” manual repair continue on
that code version until new analyses are available for a later commit.

• This project will measure latencies to determine if ACR and SCAIFE
analyses should be done in parallel (as shown) or if some ACR
analyses should be done after SCAIFE analyses, to reduce ACR analysis
latency.

45DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

GUI Mock-up

ACR
possible? Priority Auto-Repair?

Manual
Adjudication

Classifier
Confidence

True (%) Condition
yes 8890 ACCEPT CWE-190
yes 8889 REJECT INT31-C
yes 8888 ACCEPT CWE-191
yes 8887 ACCEPT CWE-79
yes 8886 ACCEPT CWE-119
yes 8885 PENDING DECISION 88 CWE-787
yes 8884 PENDING DECISION 86 CWE-125
yes 8883 PENDING DECISION 85 CWE-89
yes 8882 PENDING DECISION 84 CWE-200
yes 8881 PENDING DECISION 82 CWE-416

no 1000 N/A 90 CWE-352
no 999 N/A 85 CWE-787
no 998 N/A 84 CWE-22
no 997 N/A 82 CWE-476
no 996 N/A 81 CWE-287
no 995 N/A 80 CWE-434
no 994 N/A 78 CWE-732
no 993 N/A 77 CWE-94
no 992 N/A 73 CWE-522
no 991 N/A 65 EXP34-C

List of meta-alerts*, ACR-fixable at top. Click to see associated code and reliability.
SCAIFE GUI meta-alert list has many more fields: line, filepath, notes, etc.

…..

File X
File Y

File Z
File Q

Original Source Code File X Repaired Source Code File X
#include "fat_header.h"
#include "fat_stdlib.h"

#define BUF_SIZE 256 #define BUF_SIZE 256
char nondet_char(); char nondet_char();

int main() { int main() {

char* p = malloc(BUF_SIZE); FatPtr_char p =
fatmalloc_char(BUF_SIZE);

char c; char c;

while ((c = nondet_char()) != 0) { while ((c = nondet_char()) != 0) {

*p = c; *bound_check(p) = c;
p = p + 1; p = fatp_add(p, 1);

} }
return 0; return 0;

} }

For this ACR fix, select files on right to see edits below
(red text) that will be made if fix is accepted.

Diff View for ACR Fixes
Source Code for Manual Adjudication

Bold text specifies current code view

* Meta-alert: fused SA alerts mapped to same condition from taxonomy of code flaws (e.g., CWE-190)

Reliable fix: True

46DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

GUI Mock-up

ACR
possible? Priority Auto-Repair?

Manual
Adjudication

Classifier
Confidence

True (%) Condition
yes 8890 ACCEPT CWE-190
yes 8889 REJECT INT31-C
yes 8888 ACCEPT CWE-191
yes 8887 ACCEPT CWE-79
yes 8886 ACCEPT CWE-119
yes 8885 ACCEPT CWE-787
yes 8884 REJECT CWE-125
yes 8883 ACCEPT CWE-89
yes 8882 ACCEPT CWE-200
yes 8881 ACCEPT CWE-416

no 1000 N/A True positive CWE-352
no 999 N/A True positive CWE-787
no 998 N/A False positive CWE-611
no 997 N/A True positive CWE-476
no 996 N/A 82 EXP34-C
no 995 N/A 80 CWE-434
no 994 N/A 78 CWE-732
no 993 N/A 77 CWE-94
no 992 N/A 73 CWE-522
no 991 N/A 65 CWE-22

…..

Source Code dos2unix-7.2.2/common.c

427 fname_len = strlen(dir) + strlen("/d2utmpXXXXXX") + sizeof (char);

428 if (!(fname_str = malloc(fname_len)))

429 goto make_failed;

430 sprintf(fname_str, "%s%s", dir, "/d2utmpXXXXXX");

431 *fname_ret = fname_str;

432

433 free(cpy);

434 while ((c = nondet_char()) != 0) {

435 #ifdef NO_MKSTEMP

436 name = mktemp(fname_str);

437 *fname_ret = name;

438 if ((fd = fopen(fname_str, W_CNTRL)) == NULL)

439 goto make_failed;

Diff View for ACR Fixes Source Code for Manual
Adjudication

Bold text specifies current code view

Changed classifier confidences and order: ACR labeled meta-
alerts are used by adaptive heuristic and when retraining the
classifier.

47DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE and SEI ACR: Current and Future Work (1/2)
SEI-ACR:

• Currently works on some small/medium (10 kLOC) real-world codebases.
• Still needs additional development to consistently handle real-world codebases.

- We estimate about 8 person-weeks of effort.

SEI SCAIFE:
• Modular system, containerized with Docker.
• Combines the results from multiple SA tools.
• Manual adjudication of meta-alerts via a GUI.
• Can create labeled data for classifiers from test suites.
• GUI-based specification, training, and running of static analysis classifiers.
• Formally defined APIs for each module, using OpenAPI v3.

- Parts can be swapped out (e.g., classifier, active learning, user interface).
• It has some continuous integration (CI) functionality.

- It needs further development to support CI builds: Stats Module re-classification should start
automatically, plus add a ‘CI Orchestrator’ to ensure system consistency.

48DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE and SEI ACR: Current and Future Work (2/2)
Integrating ACR with SCAIFE:

• GUI for previewing and accepting/rejecting auto-repairs.
• Define the API for communications between ACR and SCAIFE.
• Develop API-related code.
• Containerize SEI ACR.
• Add code hooks to record metrics to analyze for the project.

Transitioning into production use:
• Enable use in a DevSecOps pipeline.
• Expected to require:

- security hardening,
- performance improvements,
- possibly a cloud-ready design.

49DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Select Performance Metrics

Among many other metrics we plan to gather:
• Validation of our tool on codebases representative of what DoD encounters in

software assurance. Metrics:
• Compare pre- and post-repair

1. classifier precision & recall;
2. adjudication cascading (compare counts and manually verify random selections)

• Counts of auto-repaired code (lines, SEI ACR suggestions accepted)
• Performance per goal: percent automatically-handled meta-alerts, precision,

recall

50DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE and ACR:
Tools & Research

Invitation to Collaborate

51DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Interest in SCAIFE-ACR Integration?

To do the integration work described, we would need more funding.
Would you or your org be interested? If so, please contact us!

52DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Invitation to Test

We invite you to test SCAIFE and ACR tools:
• Full SCAIFE system release limited to DoD and DoD contractors (Distribution D)
• Testing does not have to include data sharing
• SCAIFE classification performance release needs testers ASAP.
• If interested please contact us: lflynn@cert.org and weklieber@cert.org

Deployment and testing support by SCAIFE:
• release system Docker-containerized, with configuration files (ports, URLs, names) to ease integration in wide

variety of systems
• comes with documentation, much-extended in last year per collaborator feedback
• hands-on demos and tutorials, for quick start

Deployment and testing support by ACR:
• Coming soon: release system to be Docker-containerized
• Coming soon: hands-on demos and tutorials, for quick start

mailto:lflynn@cert.org
mailto:weklieber@cert.org

53DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Thanks + Contact Info

Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Thank you for listening!
Questions?

Feedback and potential
funding/collaborations are welcome.

Dr. Lori Flynn
lflynn@sei.cmu.edu

Dr. William Klieber
weklieber@sei.cmu.edu

mailto:lflynn@sei.cmu.edu
mailto:weklieber@sei.cmu.edu

54DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Backup slides

55DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

State of Practice/Art: ACR
Many ACR tools exist for many languages [1]; it is an active area of research and development.

• SEI ACR [2] advanced state of the art of ACR for C memory vulnerabilities, with a technique for automatically repairing all
potential violations of spatial memory safety in C source code, modulo specified limitations. The recently-discovered sudo bug
CVE-2021-3156 is an example of a memory vulnerability that SEI ACR fixes. SEI ACR developers are part of this project,
enabling cost-efficient development of the integrated system. Also, memory safety is important.

• Repairnator[3] is an open-source CI-integrated modular ACR system for incorporating a wide variety of ACR tools. The
pipeline takes a failing CI build ID and tries to replicate the bug and then repair it with different ACR tools. It can be configured
to automatically create pull requests (PRs) for ACR fixes that pass build tests. Repairnator has CI integration and GUI view of
repair to accept/reject. It isn’t integrated with an SA classification system for manual adjudication, doesn’t run repairs unless a
build fails, nor make particular ACR and classifier functionality work well together, nor improve SA classifiers with ACR fix info.

• DeepFix [4] is an ACR that fixes C language errors by deep learning (AI) trained to predict incorrect program locations along
with the fixed code. Like many ACR tools, it uses AI prediction of code flaws like SCAIFE, but only for a certain set of code
flaws the tool itself identifies, not using general-purpose SA tool results. It isn’t CI-integrated.

• AVATAR [6] uses fix patterns of SA true positives to generate patch candidates to fix semantic bugs. Similar to many ACRs, it
uses SA but the manual process of fixing the remaining SA meta-alerts is not improved nor integrated with a classifier.

[1] program-repair.org, http://program-repair.org/
[2] W. Klieber. “Automated Code Repair to Ensure Memory Safety”, SEI Research Review, Nov. 2020.
https://resources.sei.cmu.edu/asset_files/Presentation/2020_017_001_648949.pdf
[3] Repairnator: an open-source platform for automatic program repair, https://github.com/eclipse/repairnator
[4] R. Gupta, S. Pal, A. Kanade, and S. Shevade. "DeepFix: Fixing common C language errors by deep learning", AAAI 2017. https://bitbucket.org/iiscseal/deepfix/
[6] K. Liu, A. Koyuncu, D. Kim, and T. Bissyande. “AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations”, IEEE Conference on Software Analysis,
Evolution, and Reengineering, 2019. https://github.com/SerVal-DTF/AVATAR

http://program-repair.org/
https://resources.sei.cmu.edu/asset_files/Presentation/2020_017_001_648949.pdf
https://github.com/eclipse/repairnator
https://bitbucket.org/iiscseal/deepfix/
https://github.com/SerVal-DTF/AVATAR

56DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

State of Practice/Art: SA Classification and Multi-Tool Aggregation
There are many multi-SA-tool result aggregators (for code flaw coverage) and many SA classifiers (most single-tool). We haven’t
found one integrated with ACR that enables manual adjudication of non-ACR meta-alerts. Of the candidates for this
project, extensibility and modifiability are required features.

• SEI SCAIFE previously advanced state of the art for SA classification for multiple tools. A modular extensible system where
parts can be swapped out (e.g., classifier, user interface) using publicly-published formal APIs that can be used for auto-code
generation of client calls and server stubs in many languages, and much of the code publicly available. Not as fast, security-
hardened, or with a slick GUI interface like commercial tools but has modularity and access needed for project. Experienced
SCAIFE developers will work on proposed project, making the integrated system development cost-effective.

• CodeDX [1] is fast, security-hardened, imports results from multiple SA tools, and has a slick GUI interface. But it’s not useable
for this project because we cannot modify it to incorporate ACR. Proprietary: might classify, but not extensible/modifiable for
this research.

• DHS SWAMP [2] uses results from multiple SA tools, is security-hardened, CI-integrated, scalable for cloud systems. SWAMP-
in-a-Box is open-source back end and has a proprietary front-end. SWAMP doesn’t record adjudications and doesn’t
incorporate classification unless CodeDx proprietary front-end does it.

• Software Assurance Tool (SwAT) developed by Army CCDC C5ISR imports output of multiple tools, is scalable with
integrations to cloud and is currently in the process of integrating use of classifiers by integrating with the SEI SCAIFE system.
SwAT is DoD-proprietary. CCDC C5ISR is in-process integrating SwAT with our SCAIFE modular SA classification system.

[1] CodeDx https://codedx.com/
[2] SWAMP: Software Assurance Marketplace https://continuousassurance.org/
[3] Software Assurance Tool (SwAT) per correspondence with CCDC C5ISR collaborator.
[4] Release of SCAIFE System Version 1.0.0 Provides Full GUI-Based Static-Analysis Adjudication System with Meta-Alert Classification

https://codedx.com/
https://continuousassurance.org/
https://insights.sei.cmu.edu/sei_blog/2020/12/release-of-scaife-system-version-100-provides-full-gui-based-static-analysis-adjudication-system-wit.html

57DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

State of Practice: SA Classification
Some highlights about SA classification current state below.

Note: This proposal mostly involves modularly using third-party or pre-existing SA classifiers. The only proposed
classifier research is to auto-label meta-alerts matching ACR-fixes, then use that data to improve classifier predictions. We will
measure precision and recall, our team testing open-source codebases and DoD collaborators testing on their codebases. We
will use third-party commonly-used classifiers and adaptive heuristics.

Some static analysis classifier results:
• 88-91% classifier precision using multiple classifier types on CERT-adjudicated meta-alerts and multiple static analysis tools

as features [Flynn]
• 85% accuracy in study at Google with FindBugs, Logistic Regression, adaptive prioritization of meta-alerts using code-fix

decisions [Ruthruff]
• 62% precision for top 50 alerts, using locality, flaw type, code version number [Williams]
• 81% of true positive meta-alerts identified after investigating only 20% of the alerts by adaptively ranking meta-alerts using

developer feedback, supressing false positives and fixing true positives, and using more features such as alert type accuracy
and code locality. [Heckman]

• A factor of 2-8 improvement over randomized meta-alert ranking, by using formula (Z-ranking) that adapts with SA
adjudications. New labeled data can be dynamically used to re-order meta-alerts, as the analyst completes each meta-alert
adjudication from the top of the ordered set of meta-alerts. [Kremenek]

[Flynn] "Prioritizing alerts from multiple static analysis tools, using classification models" IEEE Workshop on Software Qualities and their Dependencies, 2018.
[Ruthruff] 2008. Predicting accurate and actionable static analysis warnings: an experimental approach. International Conference on Software Engineering. ACM, 341–350.
[Williams] A systematic literature review of actionable alert identification techniques for automated static code analysis. Information and Software Technology, 2011.
[Heckman] Adaptively ranking alerts generated from automated static analysis. Crossroads 14, 1 (2007), 7.
[Kremenek] 2004. Correlation exploitation in error ranking. In ACM SIGSOFT Software Engineering Notes, Vol. 29. ACM, 83–93.

Our work that led to SCAIFE, code from that is in SCAIFE.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	SCAIFE Static Analysis Classifiers Detail
	SCAIFE Classification System
	FY20-21: Rapid Adjudication of Static Analysis Results During CI
	Rapid Adjudication of Static Analysis (SA) Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	SCAIFE has 2 Types of Meta-Alert Adjudication Cascading
	SCAIFE Architecture
	FY21 Select Artifacts
	FY21 Select Artifacts
	Current Work
	Detail on testing
	Detail on testing
	Detail on testing
	Detail on testing
	Automated Code Repair to�Ensure Spatial Memory Safety
	Automated Code Repair (ACR) for Memory Safety
	Automated Code Repair (ACR) tool as a black box
	Why repair at the source-code level?�
	Fat pointers
	Fat pointer example
	Example of tool output
	Performance overhead
	Limitations
	Decompilation for Binary�Software Assurance
	Decompilation for Binary Software Assurance (FY21—22)
	Decompilation for Binary Software Assurance (continued)
	State of the Art – Recompilation of decompiled code
	Pipeline for use on in-the-wild binaries
	Code Recompilation
	Types of syntactic errors
	Slide Number 39
	Integrated Static Analysis Classification and Automated Code Repair for CI�
	Auto-Labeled ACR Fixes
	ACR & SCAIFE Meta-Alert Classification
	ACR & SCAIFE Meta-Alert Classification
	ACR & SCAIFE: Latency Impacts on Design
	GUI Mock-up
	GUI Mock-up
	SCAIFE and SEI ACR: Current and Future Work (1/2)
	SCAIFE and SEI ACR: Current and Future Work (2/2)
	Select Performance Metrics
	Slide Number 50
	Interest in SCAIFE-ACR Integration?
	Invitation to Test
	Thanks + Contact Info
	Backup slides
	State of Practice/Art: ACR
	State of Practice/Art: SA Classification and Multi-Tool Aggregation
	State of Practice: SA Classification

