SCAIFE and ACR

Static Analysis Classification and Automated Code Repair

For SWA CoP/NNSA
September 2021

Dr. Lori Flynn
Dr. William Klieber

[Distribution Statement A] Approved for public release and unlimited distribution.

Carnegie Mellon University
Software Engineering Institute

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position,
policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-|S"
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM21-0791

Cal‘llcgi(‘ M(‘"O" l;n iV(‘rSitV DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2021 Carnegie Mellon University
Software Engineering Institute

Rapid Adjudication of Static
Analysis Results During ClI

with SCAIFE modular static analysis classification system

SEl Team:
Matt Sisk
Ebonie McNeil
David Svoboda
Joseph Yankel
; Tyler Brooks

Dr. Lori Flynn (PI) Dustin Undyke
Jeffrey Mellon
Rhonda Brown
Lyndsi Hughes (tester)
Joseph Sible (tester)
Wei-ren Murray (tester)

Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.
Software Engineering Institute

. - . A meta-alert is a static analysis result for
SCAl FE Problem: too many static analysis alerts a particular line number, filepath, and

classification System Solution: automate handling code flaw condition (e.g., CWE-190).

60,000

Codebases |
); . 40,000
| TO d a y N | 30,000
A n a |yze r | d 20,000
Analyzer Alerts 10,000
m__) (Meta-alerts) 0
Goal

Continuous Integration (ClI) — optional Systems
t h d t 50,000
precisely and with high recall, classify at least 40,000
as many manually-adjudicated meta-alerts as:
Expected True Positive (e-TP) or 238
Expected False Positive (e-FP), 10,000
and

the rest as Indeterminate (l)

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

Carnegie ME‘"OI’I Un iversitv DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
)

. . . © 2021 Carnegie Mellon University 4
Software Engineering Institute

. - . A meta-alert is a static analysis result for
SCAl FE Problem: too many static analysis alerts a particular line number, filepath, and

classification system Solution: automate handling code flaw condition (e.g., CWE-190).
Codebases | 60,000
)i . 40,000

30,000

| Today §

Analyzer

Analyzer
60,000

Cl-optional systems that
precisely and with high recall, classify at least o
as many manually-adjudicated meta-alerts as:

20,000

Alerts 10,000
(Meta-alerts)

0

Goal

30,000

Expected True Positive (e-TP) or 20,000
Expected False Positive (e-FP), 10,000

and
the rest as Indeterminate (l)

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

Carnegie ME‘"OI’I Un iversitv DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
)

. . . © 2021 Carnegie Mellon University 5
Software Engineering Institute

SCAIFE Static Analysis Classifiers Detail

Designed for use by machine learning novices, with settings that can be tweaked by experts

Labeled static analysis meta-alerts used to create classifiers:
« Manually adjudicated meta-alerts (true positive, false positive)
* Test suites (e.g., Juliet): SCAIFE automatically adjudicates meta-alerts
« User chooses labeled data sets, classifier, active learning, and other options

Modular ability to add different types of classifiers, active learning, and hyper-parameter
optimization methods.

Built-in options:
« Classifiers: XGBoost, Random Forest, LightGBM

« Active Learning (adaptive heuristics): Similarities, K-Nearest Neighbors, and Label
Propagation

« Hyper-parameter optimization: Bayesian Optimization

Carnc@io]\/I(."O" l:n iV(‘l'SitV DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
o] N v ©2021 Carne ie Mellon U iversit 6
))) © 2021 Carnegie Mellon University
Software Engineering Institute

SCAIFE Classification System

Designed to be used in a wide variety of systems, with many other tools

Full SCAIFE system includes all 5 modules

Modular system designed to work with different user interfaces and static analysis tools
* SARIF static analysis format
« SCARF format (DHS SWAMP)
« Various tools and versions, with standard method for adding new tools

Use SCAIFE for a single code version or a codebase in a Cl system
 Cl system: updates to code and static analysis for the new code version

Carn(‘/gi(‘]\/I(‘"OI’I l,fn iV(‘l'SitV DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
R . . . © 2021 Carnegie Mellon University
Software Engineering Institute

FY20-21: Rapid Adjudication of Static Analysis Resu

During Cl e &

Improve classifier
precision & recall

ts

labeled data

of |[Enable classifier use via

sssssssss

* Issue addressed: It takes too much time to
adjudicate (i.e., audit) static analysis meta-alerts
during continuous integration (ClI).

* Novel approach: During Cl builds, use classifiers
with precise cascading and CI/CD features.

Carn(‘/gi(‘ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

Rapid Adjudication of Static Analysis
(SA) Meta-Alerts During CI

Source Code

Repository
Cl
Source Code Workflow

Check-In

Lotk

Development &
Test Teams

Cl Server

SA alert
SA alert |

— | SA alert

SAalert || SA alert || SA alert
SAalert || SA alert || SA alert
SAalert || SA alert || SA alert
SA alert || SA alert || SA alert

Alert: An SA warning (with a tool checker ID,
line #, filepath, message)

AlertCondition: An alert mapped to a code
flaw taxonomy item (e.g., CWE-190)
Meta-alert: mapped to by the set of
alertConditions that differ only by checker ID.
Adjudication and classification at the meta-
alert level.

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

Source Code

Repository
Cl
Source Code Workflow

Check-In

N

Development &
Test Teams

N\

Cl Server

SA alert

SA alert |

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

— | SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis

Meta-Alerts During CI

Source Code

Repository
Cl
Source Code Workflow

Check-In

Development &
Test Teams

N\

Cl Server

/

SA alert

SA alert |

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

Len]

SA alert

T T

SA alert

IV A

SA alert

SA alert

SA alert

SA alert

A alert | [DA alert [[SA alert ||

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

— | SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

SA alert

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis

Meta-Alerts During CI

Source Code

Repository
Cl
Source Code Workflow

Check-In

Cl Server

Lotk

Development &

SA alert

SA alert |

Test Teams

— | SA alert

SA alert || SA alert || SA alert
SA alert || SA alert || SA alert
— | SA alert L| SA alert
ks g//i ::::tt SR sl SAsjor DA dlert | SAalert] [SA aler
'SAalen [[SAalern [[SAaer [SA alert || SA alert || SA alert
Il ~a 1l ~a Al aa I
SA alert || SA al S.".A‘.El'?rt [S.A.‘i‘!‘?,[tj SJA@'?"’I :ert SA alert
SAalert || SAalf oA et 1€ SA alert 1 SA alert lert || SA alert
SA alert || SA alert || SA alert
SA alert || SA alert || SA alert

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

Source Code

Repository
Cl
Source Code Workflow Cl Server
Check-In
SA alert || SA alert || SA alert
SA alert || SA alert || SA alert
| SA alert | SA alert
\ b / S oz s S SA alert || SA alert || SA alert
i SA alert § SA alert { SA alert £
Development & SAalert| | SAaerSAaert[[SAalert|[SAalert || SAalert || SA alert
SA alert | SA alert [{ SA alert] SA alert === 1 SA alert t| SA alert t| SA alert
Test Teams SA aler== == —Go—===—==S A glert H S=m—=
\ SA alert { SA alert g SA alert A aort TS, SA alert t| SA alert || SA alert
SA alert || SA alert 5 SA alert SA alert || SA alert || SA alert
SA alert|| SA alert || SA alert BB et S = Fe = tort | [SA alert
SAaert[SAalert || S q.ca.'Le| e TE
Carnegie Mellon University gzgérggéssﬁgﬂ:ﬁiggnce Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 13

Software Engineering Institute

SCAIFE has 2 Types of Meta-Alert Adjudication Cascading

 For code versions 1 and 2, can a manual adjudication (e.g., true, false) for a
meta-alert from v1 be applied to a meta-alert for code v2?

 Imprecise cascading happens on a per-file analysis and uses regular expression
and/or line numbers.

* Precise cascading means analysis across a whole program using control flow,
data flow, and type flow.

Tool X meta-alerts, Same, but precisely

Too.I X_meta-alerts Code v2 diff cascaded FPs cascaded FPs
Code v1 (adjudicated FP)

CWE-908 CWE-908
CWE-190 CWE-190 CWE-190
CWE-758 CWE-128 CWE-128

CWE-119 CWE-119
CWE-119 CWE-398 CWE-398
CWE-398 CWE-910 CWE-910

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carne gie Mellon Universi ty

[Distribution Statement A] Approve

d for public release and unlimited distribution.

14

Any static analysis tool can + SEl SCALe + Other aggregator tools
- instantiate APIs to becomea < DHS SWAMP « Single static analysis
rC Ite Ctu re Ul Module. For example CCDC C5ISR SWAT tools
Modifications for Integration with Cl Systems

SCAIFE’s modular
architecture (i.e., efficient

Ul Module

integration with many tools msssmmsnn NEWAP|ICalls ssssssssnnnnnnnnnnnnnnna|® Stores local projects
and systems) now . + Displays project and meta-alert data
enables classifier use = API Calls + Displays Cl-updated project on refresh, API Calls
during continuous . then tells user to click classifier create+run
integration. .
] :]
. Registration Module " . Prioritization Module
The OpenAPI v3 SCAIFE
n
API definition enables - . G ¢ istration tok = -
automated code : Pen(.a(:a €S rtehg|stra ItO.n (o) ednTD . NEW A_Pl Calls : . St?rez pdr|0r|t|zatt|ort] for?ligas and user-
generation in many code = rovides authentication and basic - - uploaded prioritization fields
u authorization for other servers - -
languages = u
u :IIIIIIIIIIII. .IIIIIIIIIIIIIIIII.
[] u
[] u
| | |
Code Repository - NEW A;I Call
alls
SERVER lllllll: : :
. = -
- []
NEW API Calls
. DataHub Module Statistics Module
: + Stores tool and meta-alert information o
EEmEEEEE®m . » Creates, runs, and stores classifiers
Continuous Intearation (Cl + Stores test suite meta-data and meta-
9 (=) = NEW API Calls alert determinations NEW Stores adaptive heuristic algorithms
SERVER TmmmmmmES . Generates speculative mappings F== Ap; ==d . Stores automated hyperparameter optimization algorithms
* Updates projects with Cl data, cascades Calls « Updates Cl project data, creates new classifier with Cl data
adjudications, sends updates to Stats updates, runs classifier, sends predictions to Ul module
Module and Ul Module

Goal: Enable practical automated classification, so all meta-alerts can be addressed

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2021 Carnegie Mellon University 1 5
Software Engineering Institute

FY21 Select Artifacts

» Adjudication cascading
- Diff-based cascading integrated in SCAIFE

“““““ — ||| = - Generated diff-based cascading test data for comparison with precise
— —— cascading

- Collaboration with Dr. Le’s team from lowa State University:
* Precise cascader development
- Generated test data for precise and diff-based cascading
00targz(138MB) ~ « SCAIFE v2.0.0 release

: - automatically uses Cl update data (code, static analysis) to update
e SCAIFE projects
< - Includes hands-on demos to walk users through it on their own system

* 4 demos: One for use with full Cl systems, others for use without ClI
systems

Release ok for DoD contractors, now! - Additional training demos, code, and documentation enhancements
(Previously Dist F: only for 5 DoD orgs) T

scaife.online.2.0.1.tar.gz (115 MB) First Dist D SCAIFE release: SCAIFE v2.0.1

scaife.online.2

SCALe : SCAIFE Quick Start Demo

sssss

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
o . , °. © 2021 Carnegie Mellon University 1 6
Software Engineering Institute

FY21 Select Artifacts

» Paper "Test suites as a source of training data for static analysis alert classifiers" by
Lori Flynn, William Snavely, and Zachary Kurtz to ICSE-associated Conference on
Automation of Software Test (AST) 2021 https://conf.researchr.org/home/icse-
2021/ast-2021 and video https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=737855

SCAIFE v3 release (this week)

» Contains much-enhanced performance metrics collection:
- Experiment mode, auto-setup experiments with configuration files + datasets, collect metrics, auto-end,

£ Running SCAIFE in Experiment Mode and export data
- Metrics include (among others): classifier precision and recall, counts of adjudicated vs. high-confidence
= predicted, and key step latencies, CPU use (max, avg), bandwidth use (max, avg), memory use (max, avg)

= Java test suites now fully usable by SCAIFE
- « Cl updates in SCAIFE include Stats module and new classifier predictions
SCAIFE release test results and analysis:
« SEI Cl experts did the Cl demo, provided feedback (Lyndsi Hughes and Joe Sible)
» External collaborators started testing SCAIFE v2 and providing feedback
* Next (hopefully FY21!): SCAIFE v3 collaborator testing, analysis of test results

GitHub publications of SCAIFE APl htips://github.com/cmu-sei/SCAIFE-API
(Sept’'21 release soon)

GitHub publications of SCAIFE Ul module (SCALe) code at
https://github.com/cmu-sei/SCALe/tree/scaife-scale (Sept’21 release soon)

aaaaa

.| Notes about SCAIFE testing
e e e mstuctons it o pronces

ol ion About the SCAIFE-SCALe Public
ncludes SCALe)

Carn(‘/gi(‘ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 1 7

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

https://conf.researchr.org/home/icse-2021/ast-2021
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=737855
https://github.com/cmu-sei/SCAIFE-API
https://github.com/cmu-sei/SCALe/tree/scaife-scale

Current Work

* Writing research papers
* Gathering and analyzing test data.
* Interested potential testers welcome!

» Special report for collaborators

Carnegie Me]]()n [jniversi[v DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
. . . © 2021 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited distribution.

18

Detail on testing

* Interested potential testers welcome!

Involves

1. SCAIFe startup (docker-compose
command on Linux or Mac machine)

Start SCAIFE

IFlynn@ubuntulf: ~/scale fepp/scaife

IFlynn@ubuntulF: ~/scale/epp/scaife IFlynn@ubuntulf: ~/scale/epp/scaife IFlynn@ubuntulf: ~fscale/epp/scaifefui_s...

1Lflynn@ubuntulf:~/scalefepp/scaife$ docker-compose -f docker-compose.yml -f docker-compose.experiment.yml up

-d --buildj]

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

19

_ _ Select Experiment in Drop-Down
Detall on testing e

New Experiment

* Interested potential testers welcome!
ADJUDICATOR INFORMATION
Involves

1. SCAIFe startup (docker-compose

command on Linux or Mac machine)

2. Select experiment from list (rest auto- :
fi I IS) At:jUL::icati:n Experience

Years Adjudicating

Organization

Years Coding

Experiment Type Meta Alert Order

~

EXPERIMENT CONFIGURATION

Select Experiment:

~

Classifier Training Additional Project

Classifier Type

Adaptive Heuristic Type

Meta-Alert Filtering

Meta-Alert Priority Scheme

Hyper-Parameterization Type

Fused

Create Experiment

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2021 Carnegie Mellon University 20
Software Engineering Institute

Detail on testing

* Interested potential testers welcome!

Involves

1. SCAIFe startup (docker-compose
command on Linux or Mac machine)

2. Select experiment from list (rest auto-
fills

3. Adjudicate meta-alerts, working from
top of list. (list re-orders after
adjudications

Adjudicate Meta-alerts (Do Top of

List)

Project: dos2unix/rosecheckers project

New Alert + Condition

Path ASC, Line ASC

All IDs :I > Verdict: Unknown j Previous: j Path:
Line: - Checker: All Checkers j Tool: All Tools j Condition: All j Taxonomy: View All
Category: Al J Shuffle Seed: O
Clear Fiters
Showing 1 to 10 of 218 | Meta-alerts per page: 1 J Go — Previous . > a3 4 5 65 7. 8 21 22 Next
Select all 218 Meta-alerts: SCAIFE Mode: Connected Run Classifier: automation: Random Forest 0 v
Set selected to Manual Verdicts: 20
Predicted Verdicts: 0
i . ; .) AlertCondition ,) ;
D Flag Verdict Supplemental Notes Previous Path Line Message Checker Tool Condition Title Label Confidence Category p- Sev Lk Rem Pri Lev CWE_Lik
3814d) [[Unknown] Edit o o Idoszunix. 25 | Exclude user input fom FIO0-C rosecheckers_oss | FIOgo-c | L XCMude user inputirom false 00 3 18 1
7.2.2/common.c format strings format strings
382(d) [[Unknown] Ecit 0 0 [dos2unix 257 | Exclude user input from FIO30-C rosacheckers_oss FlOgp.c | CXlude userinputfrom false | 0.0 3 18 1
7.2.2/common.c format strings format strings
383(d) [[Unknown] Edit 0o o Idoszurix- agg | Deludeuserinputiiom by, o ocecheckers oss | Flogo.c | SXlude userinputirom . o0 s 18 1
7.2.2/common.c format strings format strings
384(d) [} [Unknown] Edit 0 0 dos2urix- 270 | Exclude user input from FIC30-C | rosecheckers_oss | FIOgo-c | Xclude user input from false | 00 3 18 1
7.2.2/common.c format strings format strings
385(d) [] [Unknown] Ecit 0 0 (L 7 || B M D FIO30-C | rosecheckers_oss | FIOgo.c | £Xclude user input from false | 00 3 18 1
7.2.2/common.c format strings format strings
386(d) [[Unknown] Edit o o dos2unix- 277 | Exclude user input from FIO30-C rosecheckers_oss FIOzo.c L ode useriputirom false 00 3 18 1
7.2.2/common.c format strings format strings
261 printf(_(" -863 use DOS code page 863 (French Canadian)\n"));
262 printf(_(" -865 use DOS code page 865 (Nordic)\n"));
263 printf(_(" -7 convert 8 bit characters to 7 bit space\n"));
264 if (is_doszunix(prognane))
265 printf(_(* -b, --keep-bon keep Byte Order Mark\n"));
266 else
267 printf(_(* -b, --keep-bon keep Byte Order Mark (default)\n®));
268 printf(_(* -c, --convnode conversion mode\n
269 convmode ascii, 7bit, iso, mac, default to asciiyn"));
270 printf(_(* -f, --force force conversion of binary filesin®));
271 #ifdef D2U UNICODE
272 #if (defined(_WIN32) & !'defined(CYGWIN_))
273 printf(_(" -gb, --gb18830 convert UTF-16 to GB18836\n"));
274 #endif
275 #endif
276 printf(_(* -h, --help display this help text\n"));
277 printF(C(* -i, --infol=FLAGS] display file information\n\
278 file ... files to analyze\n")):

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

21

Detail on testing

* Interested potential testers welcome!

Involves

1. SCAIFe startup (docker-compose
command on Linux or Mac machine)

2. Select experiment from list (rest auto-
fills)

3. Adjudicate meta-alerts, working from
top of list. (list re-orders after
adjudications)

4. Send exported 3 files back if possible,
else just provide qualitative feedback
on testing.

Experiment End: Exports 3 Files

datahub_(Experiment_2021-09-03T22:56:08Z) dos2unix_with_Random Forest _and K-Nearest Neighbors.json
scale (Experiment 2021-09-03T22:56:08Z) dos2unix_with_Random_Forest _and_ K-Nearest Neighbors.json
stats_(Experiment 2021-09-03T22:56:08Z) dos2unix with Random Forest and K-Nearest Neighbors 2021-09-03 22:58:46 324347.json

Carncgi(\ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
. . ° © 2021 Carnegie Mellon University
Software Engineering Institute

Carnegie Mellon University
Software Engineering Institute

Automated Code Repair to
Ensure Spatial Memory Safety

Dr. Will Klieber(PI) SEI Team:

Ryan Steele

Matt Churilla

David Svoboda

Mike McCall

Ruben Martins (CMU SCS)

[DISTRIBUTION STATEMENT A] Approved
for public release and unlimited distribution.

Automated Code Repair (ACR) for Memory Safety

Problem: Software vulnerabilities constitute a major, growing threat.
* Spatial memory violations are among the most common and most
severe types of vulnerabillities.
- 15% of CVEs in the NIST NVD and 24% of critical-severity CVEs.

- IPhone i0S CVE-2019-7287 (exploited by Chinese government, according to
https://techcrunch.com/2019/08/31/china-google-iphone-uyghur/)

- Android Stagefright (2015)

Cal‘llcgi(‘ M(‘"O" l;n iV(‘rSitV DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 24
. . . © 2021 Carnegie Mellon University
Software Engineering Institute

https://techcrunch.com/2019/08/31/china-google-iphone-uyghur/

Automated Code Repair (ACR) tool as a black box

Solution: Automatically repair source code to assure spatial memory safety.

Abort program (or call error-handling routine) before memory violation.

Approach: Repair program to use fat pointers to track bounds and insert a

bounds check before memory accesses.

Input: Buildable - ACR Tool N
codebase written in C . Py ol .

printf((] N
Output: Repaired Y A@R B
source code that is still ————— somatice
human-readable and s)
maintainable [)

printf(
II%SII'

name);

Carn(‘/gi(‘ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution

. . . © 2021 Carnegie Mellon Universit: y
Software Engineering Institute

25

Why repair at the source-code level?

Repair of source code Repair as a compiler pass
Easily audited (if desired). Must trust the tool.

Repairs can easily be tweaked to Difficult to remediate performance
improve performance, if necessary. ISsues caused by repair.

Changes to source code are frequent Changes to the build process may be
and easily handled. more difficult, more error-prone, and
create unwanted dependencies.

Okay to do slow, heavy-weight static Slowing down every build is not okay.
analysis; produces a persistent artifact.

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement
© 2021 Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

Fat pointers

We replace raw pointers with fat pointers:
« Afat pointeris a struct that includes the pointer itself as well as bounds information.

« Before dereferencing a fat pointer, a bounds check is performed.
« For each pointer type T *, we introduce a fat-pointer type defined as follows:

struct FatPtr T {
T* rp; /* raw pointer */
char* base; /* of allocated memory region */
size t size; /* of allocated memory region, in bytes */

}s

Fattening of pointers has been performed as a compiler pass:
« Todd Austin et al. “Efficient detection of all pointer and array access errors.” PLDI, 1994.

Wei Xu et al. “An efficient and backwards-compatible transformation to ensure memory safety of C
programs.” ACM SIGSOFT, 2004.

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
S ¢ © 2021 Carnegie Mellon University

Software Engineering Institute

27

Fat pointer example

NJhlel1]1]o] [wlo]r]1]d N
*

L Original:

p

/Repaired: \ p.rp —~ A
p.base

(p.base + p.size - 1)/

N

Carn(‘/gi(‘ M(‘"O" L‘vniV(‘rSitV DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 28
. . ° © 2021 Carnegie Mellon University
Software Engineering Institute

Example of tool output

Original Source Code

Repaired Source Code

1 1 #include "fat_header.h"

2 2 #include "fat_stdlib.h"

3 #define BUF_SIZE 256 3 #define BUF_SIZE 256

4 char nondet_char(); 4 char nondet_char();

5 5

6 int main() { 6 int main() {

7 char* p = malloc(BUF_SIZE); 7 FatPtr_char p = fatmalloc_char(BUF_SIZE);
8 char c; 8 char c;

9 while ((c = nondet_char()) != 0) { 9 while ((c = nondet _char()) != 0) {
10 *p = C; 10 *bound_check(p) = c;

11 p=p+ 1; 11 p = fatp_add(p, 1);
12 } 12 }
13 return 0; 13 return 0;
14} 14}

Carnegie Mellon University DODINNSA Software Assurance Community of Practice (DoDINNSA SwA CoP) [isibuion Satement A Approvd for publis rleas and e dsbuion

© 2021 Carnegie Mellon University

Software Engineering Institute

29

Performance overhead

Full Repair: Guard every memory
access. libguantum

Partial Repair: Run static-analysis

tool and insert bounds checks only

for memory accesses flagged by sieng
the static analyzer.

Small performance overhead:

. mcf

« 3% for libquantum

« 9% for sjeng

« 3% for bzip2
Still large overhead for programs bzip2
with many pointers:

o 0

62% for mcf 0 50 100 150 200

(Currently we still fatten all pointers, m Full Repair W Partial Repair W Original
even if we never use the bounds.)
Carnegie Mellon University cggoDz{?lyasrﬁe ;:ﬁgﬁ’rfuﬁizggnce Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 30

Software Engineering Institute

Limitations

We cannot guarantee memory safety in the presence of:
* Non-standard pointer tricks (e.g., XOR-linked lists)
* Reuse of memory for different types (except via unions)

« Concurrency
- Race conditions can cause memory corruption

« External code that accesses program memory

- If the program’s data structures are accessed by external binary code,
the pointers inside them cannot be fattened.

- We can identify such pointers using a whole-program points-to analysis
with an allocation-site abstraction.

Carnegie Mellon University
Software Engineering Institute

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

31

Carnegie Mellon University
Software Engineering Institute

Decompilation for Binary
Software Assurance

Dr. Will Klieber(PI) SEI Team:

David Svoboda
Ruben Martins (CMU SCS)

[DISTRIBUTION STATEMENT A] Approved
for public release and unlimited distribution.

Decompilation for Binary Software Assurance (FY21—22)

» Goal: Increase software assurance of components available only in binary form.
- Decompile and perform static analysis on decompiled code.
- Make localized repairs to functions of the binary.

« We are adapting an existing open-source decompiler (Ghidra) to produce decompiled
code suitable for static analysis and repair.

- Existing decompilers were developed for aiding manual reverse engineering.
- They were not designed to produce recompilable code.
- Gap: Decompiled code often has semantic inaccuracies and syntactic errors.

» Key technical steps:
- Determine which individual functions have been correctly decompiled.
- Run static analysis and localized repair on correctly decompiled functions.
- Recombine repaired functions with the original binary files (e.g., using DDisasm).

Carn(‘/gi(‘]\/I(‘"OI’I l,fn iV(‘l'SitV DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
R . . . © 2021 Carnegie Mellon University
Software Engineering Institute

Decompilation for Binary Software Assurance (continued)

* A perfect decompilation of the entire binary isn’t necessarily required to get significant
benefit, as long as enough relevant functions can be correctly decompiled.

 Main contributions of our work:

- We develop a semantic-equivalence checker to determine which individual functions are
correctly decompiled.

- We improve the syntactic and semantic correctness of decompiler output. We will offer our
improvements to the mainline branch of Ghidra used by DoD.

- Measure how well static analysis and automated repair work on decompiled code.

 This work, if successful, will enable DoD to find and fix potential vulnerabilities in binary
code that might otherwise be cost-prohibitive to investigate or repair manually.

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
o . , °. © 2021 Carnegie Mellon University 34
Software Engineering Institute

State of the Art — Recompilation of decompiled code

 Zhibo Liu and Shuai Wang. “How far we have come: testing decompilation correctness
of C decompilers.” ACM Intl Symposium on Software Testing & Analysis (ISSTA), July
2020.

- Tested synthetic code without input or nondeterminism.

- Ghidra: out of 2504 test cases (averaging around 250 LoC), 93% were correctly decompiled.

- Only unoptimized code. No structs, unions, arrays, or pointers.

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution
o . . °. © 2021 Carnegie Mellon Universit: y
Software Engineering Institute

35

Pipeline for use on in-the-wild binaries

Original Decompiled Analvsi) Analysis results
binary _ code ,) nalysis ~
> Decompiler - Filter] and/or
J 1 Correctly Repai
: epair , -
decompiled ~/ Repaired source
Clang functions
Recompiled
binary
Semantic equivalence checker
Carnegie Me"()n LTn iversi[y gg(l))z(:\lglasr,:;;gﬁgirfuﬁisvzggnce Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 36

Software Engineering Institute

Code Recompilation

The table shows the percentage
of source-code functions that are
extracted as recompilable (i.e.,
syntactically valid) C code.

SPEC 2006
Benchmarks

4

Project
dos2unix
jasper
lom

mcf
libquantum
bzip2
sjeng
milc
sphinx3
hmmer
gobmk
hexchat
git
ffmpeg
Average

Source
Functions

40
725
21

24

94
119
144
235
369
552
2,684
2,281
7,835
21,403

Recomp
Functions

17
377
13

18

34

80

93
135
183
274
853
1,106
3,032
10,223

Percent
43%
52%
62%
75%
36%
67%
65%
57%
50%
50%
32%
48%
39%
48%
52%

Carnegie Mellon University
Software Engineering Institute

© 2021 Carnegie Mellon University

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)

[Distribution Statement A] Approved for public release and unlimited distribution.

37

Types of syntactic errors

Count
609
706
910

2,972
1,224
1,153
3,434
11,008

Error type

Request for member in something not a structure or union
Invalid operands to binary operator

Other

Use of undeclared identifier

void value not ignored as it ought to be

too many arguments to function

too few arguments to function

Total

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution

© 2021 Carnegie Mellon University

38

SCAIFE-ACR Integration

V]

(‘al‘ll(‘&"i(‘ 1\“"(‘"0" l'" i\'(‘l'S“\' DoD/NNSA Software Assurance Community of Practice (DOD/NNSA SwWA COP) [Distribution Statement A] Approved for public release and unlimited distribution.
Software Engineering Institute

)21 Carnegie Mellon U Y

Integrated Static Analysis Classification and Automated
Code Repair for CI

Problem: DoD organizations that develop code or analyze code security need to make code more secure, with as little costly
manual effort as possible. Automated code repair (ACR) tools can fix some code flaws, and automated SA classifiers can
save manual work adjudicating static analysis (SA) results, but they may not work well together as-is.

Solution: A system that can modularly incorporate a wide variety of SA classifiers and ACRs that increases the percent of high-
severity SA results’ addressed automatically after applying ACR, designed for Cl. “Automatically” means “automatically repaired”
or “automatically classified with confidence 70% or greater” (provided that the classifier has a precision and recall 70% or greater).

Approach: Building on what we’ve learned and the tools from the previous 6 years of Line-funded projects (SEI ACR* and
SCAIFE?), we will develop a modularly integrated SCAIFE-ACR system for Cl, then use it to measure impact of SEI ACR on
the percent of high-severity SA results addressed automatically. We test it with open-source code and collaborators use it in their
systems on their code. Also, novel use of ACR fix data to improve classifier predictions, and measure effectiveness with classifier
precision and recall comparisons.

1. High-severity SA results: warnings for top 25 dangerous CWE and CERT coding rules with severity level 3
2. SCAIFE: modular static analysis classification system with GUI developed by L. Flynn’s SEI projects

3. ACR: uses a semantic representation of code to fix code flaws

4. SEI ACR: ACR tooling for memory safety in C developed by W. Klieber’s SEI projects

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 40

Carnegie Mellon University
- < © 2021 Carne gie Mellon Universi ty

Software Engineering Institute

Auto-Labeled ACR Fixes

1. An ACR fix is made to the code (was version 1, now v2 in new branch)

ACR

possible? Priority

yes
yes
yes
yes
yes
yes

8890
8889
8888
8887
8886
8885

Auto-Repair?

YES
NO
YES
YES
YES
YES

Adjudication

Classifier
Confidence
True (%)

Manual
Condition

CWE-190
INT31-C
CWE-191
CWE-79
CWE-787
CWE-125

2. The ACR code fixes (v2) are committed to the remote repository. Then, the CI server builds
and tests the code, and sends results back to the development+test team and to SCAIFE.

Source Code
Repository

e

Cl

Source Code Workflow

Check-In

g

Cl Server

= Gl

Compile Install
Build Deploy

Project
Run Stati
Analysis

o]
More
‘ Automated ’

Server
Report the
Results
Tests

SA alert

SA alert [[SA alert

SA alert

SA alert || SA alert

SA alert

SA alert l{ SA alert

Aé‘ E SA alert H
Development SA alert| [SAammS

BA alert|[SA alert|| SA alert

e S Al A alert| [SA alert] [SA alert

& Test Teams SA

i

[0

b=)
le SA alert[| SA alert [SA alert L. Ce=

SA alert i SA alert t| SA alert

SA ale

SA alert[| SA alert § SA alert

SA alert | SA alert | SA alert

SA alert || SA alert 5 SA alert

SA alert || SA alert || SA alert

SA alert|| SA alert § SA alert
[SA e

>

L

(0]

=1
olonl[nllon

SA alert || SA alert || SA alert

TOTCTT]

3. SCAIFE fuses SA results into meta-alerts. If last code push is an auto-repair, SCAIFE checks if a
meta-alert for the repaired condition re-appears on matched lines* of repaired code. If yes, it
auto-labels the meta-alert False if fix marked ‘reliable’ by the ACR. New feature “auto-repair” for
classifier. No ACR auto-labels True.)

SEI ACR does not prove the code v1 meta-alert was True, but it fixes many memory safety violations

Code v2, same location and condition: meta-alert auto-labeled FALSE

* Lines may be matched using POSIX diff program, possibly enhanced with extra matching information related to

ACR

possible? Priority
yes 8885

Code v1, ACR-fixed meta-alert

N/A 7000

Auto-Repair?
YES

PREVIOUS

Classifier

Confidence

True (%)
88

Manual
Adjudication

80

Codebases

Filepath
10 dir4/FileX

Analyzer

Analyzer

Goal for Classification Subsystem

(Meta-alerts)

4. The new labeled data (meta-alert auto-labeled false and
associated data) is used to improve the SA classifier predictions for
all remaining not-yet-adjudicated meta-alerts, using adaptive
heuristics and/or occasional classifier retraining.

Data for adaptive heuristics
and classifier retraining

Expected False

the ACR system. E.g., a memory access that previously took 1 line might be expanded by the ACR to take 3 lines and

in one file plus a new function in another file, and any of those locations would count as a match.

Automated classification for Cl systems, that
precisely and with high recall,
classifies at least as many
manually-adjudicated meta-alerts

Expected True Positive (e-TP) or

Positive (e-FP),

the rest as Indeterminate (I)

Out: TP, FP, IR
and
unaddressed
‘¥ meta-alerts

In:
Prioritized ‘I’
meta-alerts

S

Classified e-TP and e-FP meta-alerts

Carnegie Mellon University

Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

* ACR option 1: Make all

ACR & SCAIFE Meta'Alert ClaSSiﬁcation possible automatic repairs

(worse runtime overhead,

Feature development & bugfixes ——PR — Source Code better safety)
Automatic Code j * ACR option 2: Only repairs
Repair (option 1) higher-priority meta-alerts

\{ (less runtime overhead, but
v might leave unfixed vuls)

SCAIFE meta-alert classification

(Run static analysis and other tools, use data archives, active learning, etc.) * ACR option 3: Analyst views
| potential repairs for high-
SCAIFE split into 3 categories (e-TP, e-FP, I) of prioritized meta-alerts priority meta-alerts and
— approves or rejects each
Pull Request (PR) individually.
Meta-alert One path down could happen:
adjudication duri ti
Manual ‘ ¢ auring one continuous
AUtoma-Uc Code Repair code repair 4_/ k» lgnore integration build CyC|e (CVCIE
(option 2 or ,\3) (developer) until build passes, then

/ repeat for new builds)

Repaired Source Code * during a code security

Carn(‘/“i(‘ M(‘"Oﬂ Lfn iversity DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
e < © 2021 Carnegie Mellon University 42

Software Engineering Institute

ACR & SCAIFE Meta-Alert Classification

Feature development & bugfixes ——PR —> Source Code

SCAIFE run static analyses, process
results, cascade manual adjudications

i

SCAIFE meta-alert classification
(use data archives, active learning, occasionally retrain classifier, etc.)
Pull Request (PR) l
SCAIFE split into 3 categories (e-TP, e-FP, I) of prioritized meta-alerts

Adjudication
data
Meta- alert
adjudication \
v Manual

Automatic Code Repair ___, 5ge repair 4_/ K» lgnore

(human deC|des)’ g (developer)
/ /

Repaired Source Code
/

ACR analysis-only

Repair data for
retraining, active
learning

Example: SCAIFE and ACR
option 3 (manual
decisions)

Parallel manual effort
possible:

* ACR decisions
* manual code repair

* meta-alert adjudication

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)

Carnegie Mellon University
< © 2021 Carnegie Mellon University

Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited distribution.

43

ACR & SCAIFE: Latency Impacts on Design

Feature development & bugfixes —-PR—.:_g Source Code

SCAIFE run static analyses, process
results, cascade manual adjudications

ACR analysis-only

SCAIFE meta-alert classification
(use data archives, active learning, occasionally retrain classifier, etc.)

Pull Request (PR)

SCAIFE split into 3 categories (e-TP, e-FP, I) of prioritized meta-alerts

Repair data for

retraining, active

Isarning Meta-alert
adjudlcatlon

Manual
code repair \ Ignore
(developer)

N Repalred Source Code)

Adjudication
data

Automatlc Code Repair
(human deudes)

* ACR option 1: Make all possible automatic repairs
(worse runtime overhead, better safety)

* ACR option 2: Only repairs high-priority meta-alerts
(less runtime overhead, but might leave unfixed vuls)
* ACR option 3: Analyst views potential ACR repairs for

high-priority meta-alerts and approves or rejects each
individually.

One vertical flow could happen:

a. for a Cl build, with SCAIFE / ACR results that the Cl system can use

b. during a code security analysis + fix

c. for one code commit, with manual repairs/analyses working down priority lists

* For fast ACR and SCAIFE analyses, the analyses (and potential repairs)
could be potentially be done for each Cl build.

* For slower ACR and SCAIFE analyses, (e.g., for large codebases) the
envisioned design would have the analysis be done on a code version
(e.g., on a particular commit to a repository). After, ACR (1,2, or 3)
and SCAIFE “I” adjudications and “e-TP” manual repair continue on
that code version until new analyses are available for a later commit.

* This project will measure latencies to determine if ACR and SCAIFE
analyses should be done in parallel (as shown) or if some ACR
analyses should be done after SCAIFE analyses, to reduce ACR analysis
latency.

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University 44

[Distribution Statement A] Approved for public release and unlimited distribution.

SCAIFE GUI meta-alert list has many more fields: line, filepath, notes, etc.

* Meta-alert: fused SA alerts mapped to same condition from taxonomy of code flaws (e.g., CWE-190)

List of meta-alerts*, ACR-fixable at top. Click to see associated code and reliability.
GUI Mock-up

Bold text specifies current code view

Clas.sifier Diff View for ACR Fixes
ACR Manual | Confidence Source Code for Manual Adjudication SeTlAele e e

possible? Priority Auto-Repair? Adjudication| True (%) Condition
yes 8890 ACCEPT CWE-190 For this ACR fix, select files on right to see edits below File X File Z
yes 8889 REJECT INT31-C (red text) that will be made if fix is accepted. File Y File Q
yes 8888 ACCEPT CWE-191
yes 8887 ACCEPT CWE: 7D Original Source Code File X Repaired Source Code File X
yes 8886 A CWE-119

yes 88839 PENDING DECISIO CWE-787 #include "fat_header.h"

yes 8884 PENDING DECISION CWE-125 #include "fat_stdlib.h"

yes 8883| PENDING DECISION CWE-89 #define BUF_SIZE 256 #define BUF_SIZE 256

yes 8882 PENDING DECISION CWE-200

char nondet_char(); char nondet_char();
yes 8881 PENDING DECISION CWE-416

int main() { int main() {

FatPtr_char p =
fatmalloc_char(BUF_SIZE);

char c; char c;

char* p = malloc(BUF_SIZE);
CWE-352
CWE-787
CWE-22 while ((c = nondet_char()) != 0) { while ((c = nondet_char()) != 0) {
CWE-476
CWE-287
CWE-434 p=p+1
CWE-732 } }
CWE-94 return 0; return 0;
CWE-522
EXP34-C

*p = c; *bound_check(p) = c;
p = fatp_add(p, 1);

Carncgi(\ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 45
. . ° © 2021 Carnegie Mellon University
Software Engineering Institute

Changed classifier confidences and order: ACR labeled meta-

G U I M OCk'u p alerts are used by adaptive heuristic and when retraining the
classifier.

Bold text specifies current code view

Classifier Diff View for ACR Fixes Source Code for Manual
Adjudication

ACR Manual Confidence

possible? Priority Auto-Repair? Adjudication| True (%) Condition
yes 8890 ACCEPT CWE-190 .
ves 8889 REJECT INT31-C Source Code dos2unix-7.2.2/common.cC
yes 8888 ACCEPT CWE-191

yes 8887 ACCEPT CWE-79
yes 3886 ACCEPT CWE-119 fname_lep = strlen(dir) + strlen("/d2utmpXXXXXX") + sizeof (char);

yes 8885 ACCEPT CWE-787 if ¢¥(fname_str = malloc(fname_len)))
yes 8884 REJECT CWE-125

yes 8883 ACCEPT CWE-89
yes 8882 ACCEPT CWE-200 g sprintf(fname_str, "%s%s", dir, "/d2utmpXXXXXX");
yes 8881 ACCEPT CWE-416

goto make_failed;

*fname_ret = fname_str;

True positive CWE-352 free(cpy);

True positive CWE-787 while ((c = nondet_char()) != 0) {

False positive CWE-611

True positive CWE-476 #tifdef NO_MKSTEMP
EXP34-C

: name = mktemp(fname_str);
CWE-434
CWE-732 *fname_ret = name;
CWE-94 if ((fd = fopen(fname_str, W_CNTRL)) ==
CWE-522 . e failed
CWE22 goto make failed;
Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
S ¢ © 2021 Carnegie Mellon University 46

Software Engineering Institute

SCAIFE and SEI ACR: Current and Future Work (1/2)

SEI-ACR:

» Currently works on some small/medium (10 kLOC) real-world codebases.
« Still needs additional development to consistently handle real-world codebases.
- We estimate about 8 person-weeks of effort.

SEI SCAIFE:

* Modular system, containerized with Docker.
» Combines the results from multiple SA tools.
« Manual adjudication of meta-alerts via a GUI.
« Can create labeled data for classifiers from test suites.
» GUI-based specification, training, and running of static analysis classifiers.
» Formally defined APls for each module, using OpenAPI v3.
- Parts can be swapped out (e.g., classifier, active learning, user interface).
* It has some continuous integration (Cl) functionality.

- It needs further development to support Cl builds: Stats Module re-classification should start
automatically, plus add a ‘Cl Orchestrator’ to ensure system consistency.

Carnegie Mellon UniVerSity DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2021 Carnegie Mellon University
Software Engineering Institute

47

SCAIFE and SEI ACR: Current and Future Work (2/2)

Integrating ACR with SCAIFE:
» GUI for previewing and accepting/rejecting auto-repairs.
» Define the API for communications between ACR and SCAIFE.
» Develop API-related code.
» Containerize SEI ACR.
» Add code hooks to record metrics to analyze for the project.

Transitioning into production use:
» Enable use in a DevSecOps pipeline.
» Expected to require:
- security hardening,
- performance improvements,
- possibly a cloud-ready design.

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

48

Select Performance Metrics

Among many other metrics we plan to gather:

« Validation of our tool on codebases representative of what DoD encounters in
software assurance. Metrics:

« Compare pre- and post-repair

1. classifier precision & recall;

2. adjudication cascading (compare counts and manually verify random selections)
« Counts of auto-repaired code (lines, SEI ACR suggestions accepted)

» Performance per goal: percent automatically-handled meta-alerts, precision,
recall

Carn(‘/gi(‘ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.

© 2021 Carnegie Mellon University

Software Engineering Institute

49

SCAIFE and ACR;
Tools & Research

Invitation to Collaborate

(‘arn(‘gio 1\“"(‘"0" l'" i\'(‘I'S“.\' DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.

A . ~ . .
© 2021 Carr e Mellon Univi

Software Engineering Institute

Interest in SCAIFE-ACR Integration?

To do the integration work described, we would need more funding.
Would you or your org be interested? If so, please contact us!

Carn(‘/gi(‘ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

51

Invitation to Test

We invite you to test SCAIFE and ACR tools:
* Full SCAIFE system release limited to DoD and DoD contractors (Distribution D)
* Testing does not have to include data sharing
« SCAIFE classification performance release needs testers ASAP.
* If interested please contact us: Iflynn@cert.org and weklieber@cert.org

Deployment and testing support by SCAIFE:

* release system Docker-containerized, with configuration files (ports, URLs, names) to ease integration in wide
variety of systems

» comes with documentation, much-extended in last year per collaborator feedback

» hands-on demos and tutorials, for quick start

Deployment and testing support by ACR:
« Coming soon: release system to be Docker-containerized
« Coming soon: hands-on demos and tutorials, for quick start

Carn(‘/gi(‘ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

52

mailto:lflynn@cert.org
mailto:weklieber@cert.org

Thanks + Contact Info

Thank you for listening!
Questions?

Feedback and potential
funding/collaborations are welcome.

Dr. Lori Flynn
Iflynn@sei.cmu.edu

Dr. William Klieber
weklieber@sei.cmu.edu

Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue

Pittsburgh, PA 15213-2612

Carn(‘/gi(‘ Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

53

mailto:lflynn@sei.cmu.edu
mailto:weklieber@sei.cmu.edu

Backup slides

Carnegie Mellon University
Software Engineering Institute

DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP)
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

54

State of Practice/Art: ACR

Many ACR tools exist for many languages [1]; it is an active area of research and development.

« SElI ACR [2] advanced state of the art of ACR for C memory vulnerabilities, with a technique for automatically repairing all
potential violations of spatial memory safety in C source code, modulo specified limitations. The recently-discovered sudo bug
CVE-2021-3156 is an example of a memory vulnerability that SEI ACR fixes. SEI ACR developers are part of this project,
enabling cost-efficient development of the integrated system. Also, memory safety is important.

* Repairnator[3] is an open-source Cl-integrated modular ACR system for incorporating a wide variety of ACR tools. The
pipeline takes a failing ClI build ID and tries to replicate the bug and then repair it with different ACR tools. It can be configured
to automatically create pull requests (PRs) for ACR fixes that pass build tests. Repairnator has Cl integration and GUI view of
repair to accept/reject. It isn’'t integrated with an SA classification system for manual adjudication, doesn’t run repairs unless a
build fails, nor make particular ACR and classifier functionality work well together, nor improve SA classifiers with ACR fix info.

» DeepFix [4] is an ACR that fixes C language errors by deep learning (Al) trained to predict incorrect program locations along
with the fixed code. Like many ACR tools, it uses Al prediction of code flaws like SCAIFE, but only for a certain set of code
flaws the tool itself identifies, not using general-purpose SA tool results. It isn’t Cl-integrated.

» AVATAR [6] uses fix patterns of SA true positives to generate patch candidates to fix semantic bugs. Similar to many ACRs, it
uses SA but the manual process of fixing the remaining SA meta-alerts is not improved nor integrated with a classifier.

[1] program-repair.org, http://program-repair.org/

[2] W. Klieber. “Automated Code Repair to Ensure Memory Safety”, SEI Research Review, Nov. 2020.

https://resources.sei.cmu.edu/asset files/Presentation/2020 017 _001_648949.pdf

[3] Repairnator: an open-source platform for automatic program repair, https://github.com/eclipse/repairnator

[4] R. Gupta, S. Pal, A. Kanade, and S. Shevade. "DeepFix: Fixing common C language errors by deep learning”, AAAI 2017. https://bitbucket.org/iiscseal/deepfix/

[6] K. Liu, A. Koyuncu, D. Kim, and T. Bissyande. “AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations”, IEEE Conference on Software Analysis,
Evolution, and Reengineering, 2019. https://github.com/SerVal-DTF/AVATAR

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2021 Carnegie Mellon University 55
Software Engineering Institute

http://program-repair.org/
https://resources.sei.cmu.edu/asset_files/Presentation/2020_017_001_648949.pdf
https://github.com/eclipse/repairnator
https://bitbucket.org/iiscseal/deepfix/
https://github.com/SerVal-DTF/AVATAR

State of Practice/Art: SA Classification and Multi-Tool Aggregation

There are many multi-SA-tool result aggregators (for code flaw coverage) and many SA classifiers (most single-tool). We haven’t
found one integrated with ACR that enables manual adjudication of non-ACR meta-alerts. Of the candidates for this
project, extensibility and modifiability are required features.

« SEI SCAIFE previously advanced state of the art for SA classification for multiple tools. A modular extensible system where
parts can be swapped out (e.g., classifier, user interface) using publicly-published formal APls that can be used for auto-code
generation of client calls and server stubs in many languages, and much of the code publicly available. Not as fast, security-
hardened, or with a slick GUI interface like commercial tools but has modularity and access needed for project. Experienced
SCAIFE developers will work on proposed project, making the integrated system development cost-effective.

« CodeDX [1] is fast, security-hardened, imports results from multiple SA tools, and has a slick GUI interface. But it's not useable
for this project because we cannot modify it to incorporate ACR. Proprietary: might classify, but not extensible/modifiable for
this research.

« DHS SWAMP [2] uses results from multiple SA tools, is security-hardened, Cl-integrated, scalable for cloud systems. SWAMP-
in-a-Box is open-source back end and has a proprietary front-end. SWAMP doesn’t record adjudications and doesn’t
incorporate classification unless CodeDx proprietary front-end does it.

» Software Assurance Tool (SWAT) developed by Army CCDC C5ISR imports output of multiple tools, is scalable with
integrations to cloud and is currently in the process of integrating use of classifiers by integrating with the SEI SCAIFE system.
SWAT is DoD-proprietary. CCDC C5ISR is in-process integrating SWAT with our SCAIFE modular SA classification system.

[1] CodeDx https://codedx.com/

[2] SWAMP: Software Assurance Marketplace https://continuousassurance.org/

[3] Software Assurance Tool (SWAT) per correspondence with CCDC C5ISR collaborator.

[4] Release of SCAIFE System Version 1.0.0 Provides Full GUI-Based Static-Analysis Adjudication System with Meta-Alert Classification

Carn(‘/gi(‘ M(‘"O" L‘vniV(‘rSitV DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution. 56
. . ° © 2021 Carnegie Mellon University
Software Engineering Institute

https://codedx.com/
https://continuousassurance.org/
https://insights.sei.cmu.edu/sei_blog/2020/12/release-of-scaife-system-version-100-provides-full-gui-based-static-analysis-adjudication-system-wit.html

State of Practice: SA Classification

Some highlights about SA classification current state below.

Note: This proposal mostly involves modularly using third-party or pre-existing SA classifiers. The only proposed
classifier research is to auto-label meta-alerts matching ACR-fixes, then use that data to improve classifier predictions. We will
measure precision and recall, our team testing open-source codebases and DoD collaborators testing on their codebases. We
will use third-party commonly-used classifiers and adaptive heuristics.

Some static analysis classifier results:

» 88-91% classifier precision using multiple classifier types on CERT-adjudicated meta-alerts and multiple static analysis tools
as features [Flynn] «—— Our work that led to SCAIFE, code from that is in SCAIFE.

» 85% accuracy in study at Google with FindBugs, Logistic Regression, adaptive prioritization of meta-alerts using code-fix
decisions [Ruthruff]

» 62% precision for top 50 alerts, using locality, flaw type, code version number [Williams]

» 81% of true positive meta-alerts identified after investigating only 20% of the alerts by adaptively ranking meta-alerts using
developer feedback, supressing false positives and fixing true positives, and using more features such as alert type accuracy
and code locality. [Heckman]

« A factor of 2-8 improvement over randomized meta-alert ranking, by using formula (Z-ranking) that adapts with SA
adjudications. New labeled data can be dynamically used to re-order meta-alerts, as the analyst completes each meta-alert
adjudication from the top of the ordered set of meta-alerts. [Kremenek]

[Flynn] "Prioritizing alerts from multiple static analysis tools, using classification models" IEEE Workshop on Software Qualities and their Dependencies, 2018.

[Ruthruff] 2008. Predicting accurate and actionable static analysis warnings: an experimental approach. International Conference on Software Engineering. ACM, 341-350.
[Williams] A systematic literature review of actionable alert identification techniques for automated static code analysis. Information and Software Technology, 2011.
[Heckman] Adaptively ranking alerts generated from automated static analysis. Crossroads 14, 1 (2007), 7.

[Kremenek] 2004. Correlation exploitation in error ranking. In ACM SIGSOFT Software Engineering Notes, Vol. 29. ACM, 83-93.

Carnegie Mellon University DoD/NNSA Software Assurance Community of Practice (DoD/NNSA SwA CoP) [Distribution Statement A] Approved for public release and unlimited distribution.
o . . °. © 2021 Carnegie Mellon University 57
Software Engineering Institute

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	SCAIFE Static Analysis Classifiers Detail
	SCAIFE Classification System
	FY20-21: Rapid Adjudication of Static Analysis Results During CI
	Rapid Adjudication of Static Analysis (SA) Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	SCAIFE has 2 Types of Meta-Alert Adjudication Cascading
	SCAIFE Architecture
	FY21 Select Artifacts
	FY21 Select Artifacts
	Current Work
	Detail on testing
	Detail on testing
	Detail on testing
	Detail on testing
	Automated Code Repair to�Ensure Spatial Memory Safety
	Automated Code Repair (ACR) for Memory Safety
	Automated Code Repair (ACR) tool as a black box
	Why repair at the source-code level?�
	Fat pointers
	Fat pointer example
	Example of tool output
	Performance overhead
	Limitations
	Decompilation for Binary�Software Assurance
	Decompilation for Binary Software Assurance (FY21—22)
	Decompilation for Binary Software Assurance (continued)
	State of the Art – Recompilation of decompiled code
	Pipeline for use on in-the-wild binaries
	Code Recompilation
	Types of syntactic errors
	Slide Number 39
	Integrated Static Analysis Classification and Automated Code Repair for CI�
	Auto-Labeled ACR Fixes
	ACR & SCAIFE Meta-Alert Classification
	ACR & SCAIFE Meta-Alert Classification
	ACR & SCAIFE: Latency Impacts on Design
	GUI Mock-up
	GUI Mock-up
	SCAIFE and SEI ACR: Current and Future Work (1/2)
	SCAIFE and SEI ACR: Current and Future Work (2/2)
	Select Performance Metrics
	Slide Number 50
	Interest in SCAIFE-ACR Integration?
	Invitation to Test
	Thanks + Contact Info
	Backup slides
	State of Practice/Art: ACR
	State of Practice/Art: SA Classification and Multi-Tool Aggregation
	State of Practice: SA Classification

