

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

A Systemic Approach for Assessing
Software Supply-Chain Risk

ABSTRACT: In today’s business environment, multiple organizations must rou-
tinely work together in software supply chains when acquiring, developing, op-
erating, and maintaining software products. The programmatic and product com-
plexity inherent in software supply chains increases the risk that defects,
vulnerabilities, and malicious code will be inserted into a delivered software
product. As a result, effective risk management is essential for establishing and
maintaining software supply-chain assurance over time. The Software Engineer-
ing Institute (SEI) is developing a systemic approach for assessing and managing
software supply-chain risks. This paper highlights the basic approach being im-
plemented by SEI researchers and provides a summary of the status of this work.

INTRODUCTION
The increasingly global nature of software development has raised concerns that
global supply chains could be compromised, allowing malicious code to be in-
serted into a delivered software product during development or enabling a com-
promised product to be substituted during delivery or installation. However,
while direct attacks on a software supply chain are emerging as a viable possibil-
ity, the most likely sources of supply-chain problems continue to be the inad-
vertent insertion of defects and vulnerabilities into software products. These de-
fects and vulnerabilities affect the ability of software to function as intended
during operations and also adversely affect its reliability, security, and safety
attributes. Unfortunately, today’s complex supply chains tend to increase the
probability that software defects and vulnerabilities will be inserted into prod-
ucts, which leads to increased risk during operations.

A key aspect of reducing software supply-chain risk is raising awareness of (1)
the conditions that can lead to the insertion of malicious code into software
products and (2) the potential for software defects and vulnerabilities to be inad-
vertently inserted into products. Supply-chain stakeholders need to raise their
awareness of these issues by identifying critical software supply-chain risks and
developing mitigation plans for those risks.

Audrey Dorofee

Carol Woody

Christopher Alberts

Rita Creel

Robert J. Ellison

February 2003

The Carnegie Mellon® Software Engineering Institute (SEI) has chartered the
Software Supply-Chain Project within its CERT® Program. The project’s goal is
to develop an approach for assessing software supply chains and raising aware-
ness of the associated risks. The goal of project is to enable a software supply-
chain’s stakeholders to maintain risk within a reasonable tolerance over time
and, as a result, establish sufficient assurance that the software supply chain is in
position to achieve its objectives. This paper highlights the basic approach being
implemented by SEI researchers to assess software-related risk throughout the
supply chain and provides a summary of the status of this work.

SOFTWARE SUPPLY CHAIN
A supply chain is defined as the set of suppliers that contribute to the content of
a product or system (both hardware and software) or that have the opportunity to
modify its content [Ellison 2010]. The SEI Software Supply-Chain Project is
primarily focused on the software supply chain, which is defined as the network
of stakeholders that contribute to the content of a software product or that have
the opportunity to modify its content. Figure 1 illustrates the notion of the soft-
ware supply chain.

Figure 1: Software Supply Chain

The purpose, or mission, of a software supply chain is to deploy software prod-
ucts that function as intended and are reliable, safe, and secure. Figure 1 shows

1 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

that a software supply chain comprises multiple organizations. In some cases,
relationships among organizations are formally defined. For example, an acquir-
er can execute a formal contract with a supplier that governs the relationship be-
tween the two organizations. Typically, the acquirer provides a set of require-
ments, and the supplier develops a software product that meets those
requirements. Another example of a formal agreement between organizations is
when an acquirer licenses commercial off-the-shelf (COTS) software from a
supplier. A license outlines any terms and conditions regarding the acquirer’s use
of the software product. However, the supplier is free to update or make changes
to the software as it sees fit, without considering the impact on its customers
(i.e., its licensees).

While many relationships within a software supply chain are governed by formal
agreements, such as contracts or licenses, some relationships are informal. For
example, software products being acquired and developed by a software supply
chain are often required to interoperate with existing operational systems and
with applications that belong to other supply chains. In practice, relationships
with other, separately funded software supply chains tend to be informal and ad
hoc.

In general, no single administrative structure or set of policies governs all organ-
izations participating in a software supply chain. In addition, no single manager
has authority over all organizations within the supply chain. Multiple points of
management control exist, which creates a degree of programmatic complexity
that can be difficult to manage effectively. In addition to managing programmat-
ic complexity, software supply-chain stakeholders also need to address the grow-
ing complexity of software products.

The nature of software products has evolved in recent years with the emergence
of computer networks. The focus has shifted from producing stand-alone soft-
ware products to providing technical capabilities within a larger system-of-
systems context. Here, a system of systems is defined as a set or arrangement of
interdependent systems that are related or connected (i.e., networked) to provide
a given capability [Levine 2003]. The following characteristics are used to dif-
ferentiate a system of systems from a very large, complex monolithic system
[Maier 1996]:

• managerial independence – The management of each system within a system
of systems is independent from the management of the other systems.

• operational independence – Each system within a system of systems pro-
vides useful functionality apart from other systems.

• evolutionary character – Each system within a system of systems grows and
changes independently of other systems over time.

2 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

• emergent behavior – Certain behaviors of a system of systems arise from the
interactions among the individual systems and are not embodied in any of
the individual systems.

• geographic distribution – Individual systems within a system of systems are
dispersed over large geographic areas.

A software supply chain is an example of a system-of-systems environment,
where multiple, independently managed organizations provide technical capa-
bilities via a set of interdependent, networked systems. Software supply-chain
assurance is defined as justified confidence that a software product functions as
intended and is reliable, safe, and secure. The programmatic and product com-
plexity inherent in software supply chains tends to increase its risk, and a high
degree of risk corresponds to low assurance. Effective risk management is thus
essential for establishing and maintaining software supply-chain assurance over
time.

SOFTWARE SUPPLY-CHAIN RISK
The term risk is used universally, but different audiences often attach different
meanings to it [Kloman 1990]. In fact, the details about risk and how it supports
decision making depend upon the context in which it is applied [Charette 1990].
For example, safety professionals view risk management in terms of reducing the
number of accidents and injuries. A hospital administrator views risk as part of
the organization’s quality assurance program, while the insurance industry relies
on risk management techniques when setting their rates. Each industry thus uses
a definition that is uniquely tailored to its perspective and context. As a result, no
universally accepted definition of risk exists.

However, whereas specific definitions of risk might vary, a few characteristics
are common to all definitions. In fact, for risk to exist in any circumstance, the
following three conditions must be satisfied [Charette 1990]:

1. The potential for loss must exist.
2. Whether the risk will occur is not known with certainty; however a proba-

bility of occurrence can be determined.
3. Some choice or decision is required to deal with the risk.

These characteristics can be used to forge a very basic definition of the word
risk. Most definitions focus on the first two conditions—loss and probability—
because they are the two quantifiable aspects of risk. Bearing this in mind, the
essence of risk, no matter what the domain, can be succinctly captured by the
following definition: Risk is the likelihood of suffering loss [Dorofee 1996]. Put

3 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

another way, risk is a measure of the likelihood that a threat will lead to a loss
coupled with the magnitude of the loss.

Programmatic and product interdependencies are forcing software supply-chain
stakeholders to rethink how they manage risk. Each group within the supply
chain can no longer assume a parochial view of risk, where its risks are consid-
ered to be isolated from those of other groups. They must view risks across the
software supply chain as being interdependent. As a result of these interdepend-
encies among risks, stakeholders are being forced to assess and manage risk
within a broader system-of-systems context.

Of particular concern is the risk that products produced by a software supply
chain will fail to function as intended or fail to operate in a reliable, safe, and
secure manner. Many sources can trigger risks to a software supply-chain’s
products, including

• acquirer actions – requirements, proposal, and source selection issues trig-
gered by an acquirer

• supplier actions – architecture, design, and coding defects initiated by a sup-
plier

• supply-chain logistics – inadequate access control of products or services in
each step of the supply chain (e.g., failures in supply-chain component de-
livery or configuration control)

• product – defects and issues associated with a software product
• operation and sustainment – operational issues arising from changes in how

a fielded product or service is used and maintained over time
For example, consider how product risk can affect a supply chain. An acquirer
typically has limited information about a software product’s security characteris-
tics when purchasing COTS software. If the COTS software contains significant
security vulnerabilities, it is considered to be a high-risk component. However,
COTS software does not operate in isolation when it is part of a software supply
chain. In the supply-chain context, high-risk COTS software is networked with
other software products and systems to produce an integrated software-reliant
system or system of systems. As a result, the software supply chain inherits risk
from its constituent software products and systems.

Consider a second example that is focused on operation-and-sustainment risk.
Software products typically provide more functionality than users need. In many
instances, unused features and services are enabled during operations. When un-
used functionality is enabled, it can lead to security vulnerabilities and increase
operational security risk. In general, all unnecessary functionality should be dis-
abled to minimize the potential for cyber attacks during operations.

4 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

These examples begin to show the breadth of software supply-chain activities. In
fact, software supply chains span all phases of the acquisition life cycle, begin-
ning with early acquisition activities and continuing through system retirement.
To ensure that software supply-chain risks are managed appropriately, stake-
holders must assume a comprehensive life-cycle approach when developing a
software supply-chain risk assessment.

APPROACHES FOR ASSESSING RISK
Risk management defines an approach for minimizing exposure to potential
losses by providing a disciplined environment for [Alberts 2010]

• continuously assessing what could go wrong (i.e., assessing risks)
• determining which risks to address (i.e., setting mitigation priorities)
• implementing actions to address high-priority risks and bring those risks

within tolerance
Assessment is a fundamental aspect of risk management. It provides a founda-
tion for ensuring that risk is maintained within an acceptable tolerance over time
by identifying circumstances that might lead to harm or loss. When a software
supply chain’s risk is within an acceptable tolerance, stakeholders have reasona-
ble assurance that the supply chain is in position to achieve its objectives. Risk
assessment is thus an important part of software supply-chain assurance.

A software supply chain is an example of an interactively complex socio-
technical system that spans multiple organizational entities. Here, a socio-
technical system is defined as interrelated technical and social elements that are
engaged in goal-oriented behavior. Elements of a socio-technical system include
the people who are organized in teams or departments to do their work tasks and
the technical systems on which people rely when performing work tasks.

Two classes of risk assessments can be used when evaluating interactively com-
plex socio-technical systems: (1) system decomposition and event analysis and
(2) systemic analysis [Alberts 2009]. Both classes will be examined in this sec-
tion, beginning with system decomposition and event

SYSTEM DECOMPOSITION AND EVENT ANALYSIS
Most traditional risk assessments are based on the principle of system decompo-
sition and event analysis [Alberts 2009]. The first step when conducting this type
of analysis is to decompose the socio-technical system into its constituent parts,

5 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

or components. Individual components are then prioritized, and a subset of com-
ponents is designated as being critical. Next, analysts evaluate how a series of
predefined events might affect each critical component, estimating the likelihood
that each event will occur and the magnitude of the resulting loss. Risk is ulti-
mately assessed using a measure called risk exposure, which is defined as the
product of an event’s likelihood of occurrence and the magnitude of loss if the
event were to occur. The main goal of system decomposition and event analysis
is to ensure that each risk is acceptable to stakeholders.

System decomposition and event analysis enables stakeholders to mitigate risks
triggered by a range of events. Controls can then be implemented to mitigate
those risks appropriately. This approach is very useful when mitigating risks to
critical components and, as a result, minimizing the likelihood that those compo-
nents will fail. Overall, system decomposition and event analysis has proven to
be an essential approach within the discipline of systems engineering. However,
when using system decomposition and event analysis to evaluate interactively
complex socio-technical systems, analysts need to understand its limitations,
which include the following [Leveson 2004]:

• The selection of which events to include in the analysis is subjective.
• An event’s causal relationships are simple, direct, and linear. Non-linear

relationships, such as feedback, are not analyzed. In addition, only the prox-
imate causes of failure are considered, and interactions among system com-
ponents are not analyzed.

• Events that produce extreme or catastrophic consequences are difficult to
predict because they can be triggered by the contemporaneous occurrences
of multiple events, cascading consequences, and emergent system behaviors.

System decomposition and event analysis is focused on preventing the failure of
critical components within a socio-technical system rather than on assuring the
behavior of the system as a whole. As a result, system decomposition and event
analysis is not sufficient for evaluating the assurance of interactively complex
socio-technical systems, like supply chains.

SYSTEMIC ANALYSIS
Systemic analysis of socio-technical systems is based on System Theory. The
underlying principle of System Theory is that a system is analyzed as a whole
rather than decomposing it into individual components and then analyzing each
component separately [Leveson 2004]. In fact, some properties of a system can
only be analyzed by considering the entire system, including

• influences of environmental factors

6 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

• feedback and nonlinearity among causal factors
• systemic causes of failure (as opposed to proximate causes)
• emergent properties
Systemic analysis thus assumes a holistic view of risk to an interactively com-
plex socio-technical system. The first step in this type of analysis is to establish
the objectives that must be achieved. The objectives define the desired outcome,
or “picture of success,” for a socio-technical system. Next, systemic factors that
have a strong influence on the outcome or result (i.e., whether or not the objec-
tives will be achieved) are identified. These factors, called drivers, are important
because they define a small set of factors that can be used to assess a socio-
technical system’s performance and gauge whether it is on track to achieve its
key objectives. The drivers are then analyzed, and the risk triggered by each
driver is assessed.

SEI experience shows that systemic analysis is useful for understanding the be-
havior of interactively complex socio-technical systems because it effectively
handles the high degree of uncertainty that is inherent in these systems [Alberts
2009]. Applying systemic analysis to interactively complex socio-technical sys-
tems provides the decision maker with a means of confidently assessing the be-
havior of the system as a whole, which is necessary when assessing assurance.
As a result, the SEI is implementing a systemic approach for assessing software
supply-chain risks across the life cycle.

SOFTWARE SUPPLY-CHAIN RISK ASSESSMENT
As mentioned in the previous section, a systemic risk assessment is based on a
small set of factors, called drivers, that strongly influence the eventual outcome
or result. SEI experience shows that approximately 15-25 drivers are needed to
establish a comprehensive profile of systemic risks to mission success [Alberts
2009]. Each driver is represented as a yes-no question, where an answer of yes
means that the driver is in its success state (i.e., contributing minimal risk to the
software supply-chain mission) and an answer of no means that the driver is in
its failure state (i.e., contributing a severe degree of risk to the software supply-
chain mission). The following is a listing of the standard set of software supply-
chain drivers:

1. Software Supply-Chain Objectives
2. Plan
3. Contracts
4. Process
5. Task Execution

7 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

6. Coordination
7. Software Supply-Chain Interfaces
8. Information Management
9. Technology
10. Facilities and Equipment
11. Environmental Conditions
12. Compliance
13. Event Management
14. Requirements
15. Architecture
16. Design, Code, and Test
17. System Functionality
18. System Integration
19. Operational Support
20. Adoption Barriers
21. Operational Preparedness
22. System Risk Tolerance
23. Certification and Accreditation
24. Sustainment
The 24 drivers in the set provide a comprehensive profile of software supply-
chain risks. The drivers are aligned with the sources of software supply-chain
risks outlined in Section 3 of this paper (acquirer actions, supplier actions, sup-
ply-chain logistics, product, and operation and sustainment). An example of a
driver question is shown in Figure 2.

Figure 2: Question and Considerations for the “Design, Code, and Test” Driver

8 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

The driver question depicted in the figure is named Design, Code, and Test
(number 16 in the standard set of 24 drivers). This particular driver is focused on
the quality of the code developed by a software supply chain. The considerations
listed below the question provide guidance about which sources of information
are relevant to the driver question.

Software Supply-Chain Risk Assessment Process
The SEI is developing a risk assessment designed to evaluate software supply-
chain drivers and establish a risk profile for a software supply chain. Figure 3
illustrates the SEI’s prototype, driver-based approach for assessing systemic
software supply-chain risks.

Figure 3: Software Supply-Chain Risk Assessment

As shown in the figure, the software supply-chain assessment comprises two
main activities: (1) Identify software supply-chain drivers and (2) Analyze soft-
ware supply-chain drivers. Each activity will be described briefly, beginning
with identifying software supply-chain drivers.

Identify Software Supply-Chain Drivers
The goal of the assessment’s first activity, Identify software supply-chain driv-
ers, is to establish a set of drivers for a software supply chain. Identifying a set of
drivers draws on the following two inputs: (1) a standard set of software supply-
chain drivers and (2) operational context. The standard set of software supply-
chain drivers comprises a collection of critical factors required for supply-chain
mission success. (Refer to Section 5 for a list of the standard set of software sup-
ply-chain drivers.)

To ensure that it is useful for a given software supply chain, the standard set of
drivers must be tailored to the needs and requirements of that supply chain. The
second input, operational context, includes data about the mission, objectives,
requirements, and environment related to the specific software supply chain that
is being assessed. Operational context is used to tailor the standard set of drivers
to meet the needs of the specific software supply chain that is being assessed.
This tailoring produces a set of drivers that are uniquely applicable to a given

9 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

software supply chain. The tailored set of drivers is analyzed during the second
activity, which is described next.

Analyze Software Supply-Chain Drivers
The goal of the second assessment activity, Analyze software supply-chain driv-
ers, is to evaluate how drivers are influencing the supply chain’s core mission.
Two inputs are required when analyzing software supply-chain drivers: (1) soft-
ware supply-chain drivers and (2) software supply-chain data.

The first input, software supply-chain drivers, is generated by the first assess-
ment activity. The second input, software supply-chain data, is obtained by con-
ducting interviews with people who are knowledgeable about the supply chain
being assessed and by reviewing documentation that is relevant to that supply
chain. The risk produced by each driver is then analyzed, and evidence support-
ing that analysis is documented. For example, analyzing the Design, Code, and
Test driver shown in Figure 2 would require examining results of design re-
views, conducting source code reviews, and analyzing common weaknesses,
among other sources of evidence.

Example
Consider the driver question depicted in Figure 4; it illustrates the question, con-
siderations, and supporting evidence for the Process driver (number 4 in the
standard set of 24 drivers). Answering a driver question requires examining how
conditions and potential events are affecting that driver. The goal is to determine
if the driver is

• almost certainly in its success state (response of yes)
• most likely in its success state (response of likely yes)
• equally likely in its success or failure states (response of equally likely)
• most likely in its failure state (response of likely no)
• almost certainly in its failure state (response of no)

10 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

Figure 4: An Analyzed Driver

When answering driver questions, analysts must document evidence to support
their answers. The data generated by interviews and document reviews form the
basis for the supporting evidence that is used to justify analysts’ responses to
driver questions. Refer to Figure 4 for an example of supporting evidence that
has been documented for the Process driver. The response of likely no for the
Process driver indicates a high degree of risk to the software supply-chain mis-
sion.

Development Approach
The SEI has conducted research and development in the area of risk management
since the early 1990s. The SEI has applied risk management methods, tools, and
techniques across the life cycle (including acquisition, development, and opera-
tions). In addition, past SEI research examined various types of risk, including
software development risk [Dorofee 1996, Williams 1999, Alberts 2009], system
acquisition risk [Gallagher 1999], operational risk [Gallagher 2005], information
security risk [Alberts 2002], and systemic risk [Alberts 2009], among others. The
Software Supply-Chain Project is leveraging previous SEI work in risk manage-

11 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

ment, particularly its work in assessing systemic risk in system-of-systems envi-
ronments [Alberts 2005].

1. The SEI approach for developing a software supply-chain risk assessment
includes the following activities:

2. Tailor the SEI method for assessing systemic risk in a system-of-systems
environment for application to software supply chains.

3. Develop a prototype set of drivers for software supply chains based on the
experience and expertise of the SEI project team.

4. Review the prototype set of drivers with external experts and refine the set
as appropriate.

5. Pilot the assessment method with selected software supply chains and refine
the method based on the results of the pilots.

To date, the SEI project team has completed the first two steps in the develop-
ment approach. The team is beginning to engage external experts to get their
feedback and comments regarding the drivers. The prototype set of drivers will
be updated and refined based on the feedback obtained from the external experts.

Summary
A software supply chain is the network of stakeholders that contribute to the
content of a software product or that have the opportunity to modify its content.
The SEI Software Supply-Chain Project is developing an approach for assessing
software supply-chain risks. The overarching goal of the project is to assure that
a software supply chain is in position to achieve its objectives by effectively
managing its risk.

While many people consider risk management to be a relatively mature disci-
pline, programmatic and product complexity is forcing software supply-chain
stakeholders to rethink how they manage their risk. Each group within a software
supply chain can no longer assume that its risks are isolated from those of their
collaborators and partners. Each participant in a supply chain must view risks
across the software supply chain as being interdependent. As a result, software
supply-chain risks must be assessed and managed within a system-of-systems
context.

SEI experience shows that systemic analysis of risk is useful when analyzing
performance in system-of-systems environments, such as supply chains. Apply-
ing systemic risk analysis to a software supply chain provides decision makers
with a means of confidently assessing the behavior of the supply chain as a
whole, which is necessary when assessing assurance.

12 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

REFERENCES

[Alberts 2002]
Alberts, Christopher & Dorofee, Audrey. Managing Information Security Risks: The
OCTAVESM Approach. Boston, MA: Addison-Wesley, 2002 (ISBN 0-321-11886-
3).

[Alberts 2005]
Alberts, Christopher & Dorofee, Audrey. Mission Assurance Analysis Protocol
(MAAP): Assessing Risk in Complex Environments (CMU/SEI-2005-TN-032).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2005.

[Alberts 2009]
Alberts, Christopher & Dorofee, Audrey. A Framework for Categorizing Key Driv-
ers of Risk (CMU/SEI-2009-TR-007). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 2009.

[Alberts 2010]
Alberts, Christopher & Dorofee, Audrey. Risk Management Framework (CMU/SEI-
2010-TR-017). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2010.

[Charette 1990]
Charette, Robert N. Application Strategies for Risk Analysis. New York, NY:
McGraw-Hill Book Company, 1990.

[Dorofee 1996]
Dorofee, Audrey, Walker, Julie, Alberts, Christopher, Higuera, Ron, Murphy, Rich-
ard, & Williams, Ray.Continuous Risk Management Guidebook. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1996.

[Ellison 2010]
Ellison, Robert & Woody, Carol. “Supply-Chain Risk Management: Incorporating
Security into Software Development.” Proceedings of the 43rd Hawaii International
Conference on System Sciences (HICSS) (CD-ROM), January 5-8, 2010, Computer
Society Press, 2010 (10 pages).

13 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

[Gallagher 1999]
Gallagher, Brian. Software Acquisition Risk Management Key Process Area (KPA):
A Guidebook Version 1.02 (CMU/SEI-99-HB-001). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 1999.

[Gallagher 2005]
Gallagher, Brian, Case, Pamela, Creel, Rita, Kushner, Susan, & Williams, Ray. A
Taxonomy of Operational Risks (CMU/SEI-2005-TN-036). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2005.

[Kloman 1990]
Kloman, Henry Felix. “Risk Management Agonists.” Risk Analysis 10, 2 (June
1990): 201-205.

[Leveson 2004]
Leveson, Nancy. “A New Accident Model for Engineering Safer Systems.” Safety
Science 42, 4 (April 2004): 237-270.

[Levine 2003]
Levine, Linda, Meyers, B. Craig, Morris, Ed, Place, Patrick R. H., & Plakosh, Dan-
iel. Proceedings of the System of Systems Interoperability Workshop (February
2003) (CMU/SEI-2003-TN-016). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2003.

[Maier 1996]
Maier, Mark. “Architecting Principles for Systems-of-Systems.” 567-574. Proceed-
ings of the Sixth Annual International Symposium of INCOSE. Boston, MA, July 7-
11, 1996. INCOSE, 1996.

[Williams 1999]
Williams, Ray, Pandelios, George, & Behrens, Sandra. Software Risk Evaluation
(SRE) Method Description (Version 2.0) (CMU/SEI-99-TR-029). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1999.

14 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

Copyright [Insert Copyright from BSI] Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001120

15 | A SYSTEMIC APPROACH FOR ASSESSING SOFTWARE SUPPLY-CHAIN RISK

	A Systemic Approach for Assessing Software Supply-Chain Risk
	Introduction
	Software Supply Chain
	Software Supply-Chain Risk
	Approaches for Assessing Risk
	System Decomposition and Event Analysis
	Systemic Analysis
	Software Supply-Chain Risk Assessment
	Software Supply-Chain Risk Assessment Process
	Identify Software Supply-Chain Drivers
	Analyze Software Supply-Chain Drivers
	Example
	Development Approach
	Summary

	References

