An Overview of AADL and
Toolsets to Support the
Engineering of Safety-critical
Systems

John Hudak, Jerome Hugues

SSD/ACPS/MBE

Carnegie Mellon University
Software Engineering Institute

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

DM21-0067

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
f =} v © 2021 Carnegie Mellon University release and unlimited distribution 2
Software Engineering Institute

Outline

Model Based Engineering at the SEI
Model-Based for Software-intensive systems using AADL
« Why AADL?

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
(=i J © 2021 Carnegie Mellon University release and unlimited distribution

Software Engineering Institute

Outline

Model Based Engineering at the SEI

Model-Based for Software-intensive systems using AADL

Carnegie Mellon UniV(‘I'SitV An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
X i . v © 2021 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

Making Critical Systems Safer and More Secure

Modern embedded systems need to be both safe and secure.
As we have seen, the pace and scale of the development of
these systems means traditional methods cannot keep up.

Research to Practice

The SEI works to rapidly move ideas from research in
embedded systems — conducted either here at the SEI, in
academia, or in industry — to practice.

Previous SEI Research External Research

Ny —/
AADL _. N\ .—STPA O
Security
.—D D/DH
Research O OD/DHS/
O Governmental
Needs
AADL Error O
Modeling —. Relevant
Annex Standards
~ [~

This Project

!
2,

©b
)

2

System System System
Auditors Testers Designers
Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
=} 7 © 2021 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

Model-Based Engineering for Cyber-Physical Systems

Create the best design
that holds up over time
as the system evolves.

, , Build a single model to assess
Test the design without —
) : == hardware and embedded software
having to write any code.

before the system is built.

SAE AADL / ACVIP OSATE DoD Transitioning

Standardized language and Open Source AADL toolset Maturity increased through
process for the engineering for performing verification pilot projects and trainings.
safety-critical systems. and validation (V&V).

Software Engineering Institute

Before You Even Write a Line of Code...

About AADL

AADL allows you to design the entire system and see where
the problems may occur. Then you can change the design
of the system to eliminate those errors.

Being able to perform a virtual integration of the software,
hardware, and system is the key to identifying problems

early — and changing the design to ensure those problems
will not occur.

Carnegie Mellon University view of AADL and Toolsets to Support the Engineering of Safety-critical Systems

SAE Avionics AADL
standard adopted in
2004

Focused on embedded
software system
modeling, analysis, and
generation

Strongly typed language
with well-defined
semantics

Used for critical systems
in domains such as

avionics, aerospace,
medical, nuclear,
automotive, and robotics

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

Outline

Model-Based Engineering for Software-intensive systems using AADL
« Challenges of embedded systems — AADL to the rescue Why AADL?

(}arncgi(‘ Mellon University An Overview of AADL a dT \ L to Support the Engineering of Safety-critical Systems D\STR\EUT\DN STATEMENTA] This material has been approved for public

X . . 2(]21(‘ gMH n Uni release and unlimited distributiol
Software Engineering Institute

We Rely on Software for Safe System Operation

Airbus Gives Aler

Landing - 36 Injured

Quantas Airbus A330-300 Forced to make Emergency

hthw rdrdr [0 Emzil
(U Dda tEB) soyawannaknow.blogspot.com
By Ed Johnsan .) !
Thirty-six passengers and cresw were injured, some seriousky,
Oct. 15 (Bloomberg) -- § in a mid-air drama that forced a Qantas jetliner to make an

after Australian investig

Ltd.
jett

The

computer fed incorrect i
Australian Transport S

G650

ceiling, before the pilots regained contral,

flight switched off t Tuescay.
0 nosedive,
Airbus AT30-300 we The terrifying incident saw the Airbus

from Singapore to Perth, Qantas said.

emergency landing, the Australian carrier and police said on

A330-300 issue a

mayday call when it suddenly changed altitude during 2 flight

feet within seconds, STammimg DasSenNUers and Crew nLa e caoin

This appears to be a unique event,” the 2au said, adding that

aircr.

fitted with the same air-data computer, The advisory is * " aimed at
minirmizing the risk in the unlikely event of a similar occurrence.”

ce-hased Airb argest maker of cormmercial
aft, issued a telex late yesterday to airlines that fly A330s and A340s

Two Crashes In Five Months

What's Wrong with Boeing's 737 Max 8?

Boelng's new alrplane has only been around for two years and already two 737 Max 8s have crashed, killing

FAA says software problem with
Boeing 787s could be catastrophic

By Dan Catchpole
@dcatchpole

The Federal Aviation Administration says a

software problem with Boeing 787 E] The Buzz: Hipster's dilemma

Dreamliners could lead to one of the [] Boeing & aerospace news
advanced jetliners losing electrical power in [E] Aerospace blog
flight, which could lead to loss of control.

The FAA notified operators of the airplane Friday that if a 787 is powered continuously for

.248 days, the plane will automatically shut down its alternating current (AC) electrical power.

Embedded software systems
introduce a new class of problems
not addressed by traditional
system safety analysis

346 people. The disasters may be attributable to a deslgn flaw that emerged when engineers began cutting

CcOorners.

[

Boeing's Max 8 is short, limiting ground clearance under the wings. The engin
simply doesn't fit

J

Breakdown in human intensive
safety assessment process

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
57" J © 2021 Carnegie Mellon University

Software Engineering Institute

release and unlimited distribution 9

The Safety-Critical Embedded Software System Challenge

Problem:
Software increasingly dominates safety and mission critical system development cost.
80% of issues discovered post unit test.

Solution: Early discovery of system level issues through architecture modeling, virtual
Integration and incremental analytical assurance.

Approach:

International standard based research driven technology matured into practice through
pilot projects and industry initiatives. (SAE International Aerospace Standard AS-5506B)

Development of an open source research prototyping platform continually enhances
analysis, verification, and generation capabilities.

[Reducing Defect Leakage through Early Analytical Assurance is Critical]

(Jﬂl‘ll(‘gi(‘ Mellon L'niwrsity H yo?[\:”oq‘:;«%:HSJ’T‘U;\‘L‘L to Support the Engineering of Safety-critical Systems rDe\‘SIPP\:JT(\‘CH\‘lfTL:j’rE‘rﬁ:"L:} This material has been approved for public
Software Engineering Institute

High Fault Leakage Drives Major Increase in Rework Cost

Aircraft industry has reached limits of affordability due to
exponential growth in SW size and complexity. 20.5% 300-@

Requiremer§ 70% Requirements & system

Engineering}l " jnteraction errors introduced ?:gtepta”"e
3.5% are detected, 10% errors introduced
1x cost to remove 80% late error discovery,
20-100x cost to fix
System
o o 1 Test
Systom 70%, 3.5% 1x
Design
Major cost savings through rework avoidance by Integration
. . Test
early discovery and correction
software A $10k architecture phase correction saves $3M
Architectur
Design
~
Where faults are introduced 20%, 16% Total System Cost
Component Unit Boeing 777 $12B
Where faults are found e 5x e S
The estimated nominal cost for fault removal pesign J
Sources:
NIST Planning report 02-3, The Economic Impacts of Inadequate Infrastructure)
for Software Testing, May 2002. Software as % of total system cost
D. Galin, Software Quality Assurance: From Theory to Implementation, 1997: 45% — 2010: 66% — 2024: 88%
Pearson/Addison-Wesley (2004) J
B.W. Boehm, Software Engineering Economics, Prentice Hall (1981) N
y Post-unit test software rework cost
Code 50% of total system cost and growing
Development)
Carncgi(‘ Mellon UniV(‘,I'SitV An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public

© 2021 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

11

Technical Challenges in Safety-Critical Embedded

Need Semantics To
Software Ssystems
stem Engineer Physical Plant Address these Challenges
System Hazards Characteristics Control Engineer

Measurement units

Boolean, integer,
System Control real, vs data
Under System abstraction
Control

Operator Time-sensitive

Error ' Processing

System User/Environment

Application

Jadojanaqg uonesyddy

Compute Runtime f
Platform 1 Architecture g IEIE
I-IIEarc!ware Virtualization & Concurrency &
ngineer Redundancy Communication

Why do system level failures still SW System Engineer

occur despite best safety practices? [Embedded software systems have become]

a major safety and cyber security risk

Cdl’ll(‘,g‘i(‘ Mellon University An Overview of AADL a dT \ L to Support the Engineering of Safety-critical Systems D\STR\EUT\ON STATEMENT A] This material has been approved for public

))) 2<J21<‘ negie Mellon Un release and unlimited distribution 12
Software Engineering Institute

Analysis of System Properties via Architecture Model
A Contribution to Single Source of Truth

Change of Encryption from
128 bit to 256 bit
Availability

Integrity
Confidentiality

RESOURCE
CONSUMPTION /)

One change drives multiple
system issues

Bandwidth
CPU Time

Power Consumption

Higher CPU
Demand

SAE AS5506 AADL

’ REAL-TIME
PERFORMANCE

Affects Temporal
Correctness

SAFETY &
RELIABILITY

Hazard Analysis
FMEA
FTA

MTRF
Potential New
Hazard

Single Source of Truth
Across Analysis
Models

Increased Deadlock/ Starvation
Lat Latency T Ic N
SLENCY) Execution Time/ Deadline emporal Correctness

Data Precision/ Accuracy

(]arn(tgi(‘ Mellon UIIiV(‘I'SitV Aan;:ré\cw o[AAMD\‘; anaToo\scts to Support the Engineering of Safety-critical Systems
)] v © amegie Mellon University
Software Engineering Institute

Confidence

DISTRIBUTION STATEMENT A] This material has been approved for public
re

lease and unlimited distribution.

Outline

Model Based Engineering at the SEI

Model-Based Engineering for Software-intensive systems using AADL

» Challenges of embedded systems — AADL to the rescue Why AADL?
* Model-Based System Engineering, AADL

« AADL Language Overview

« AADL Tooling

Carnegie Mellon Universitv An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
v © 2021 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

14

Model-Based System/Software Engineering
Overarching objectives

MBSE complements typical software programming with models to Concepts

1. Organize stakeholders needs and elicit requirements
2. Capture system elements — design, reverse engineering or COTS
* Interfaces, components internals (static and behavioral), and
« a system architecture built from those: deployment, (re-)configuration

b 13

3. Apply analytical frameworks to assess model’s “compliance to some objectives”
« Syntactic, conformance to guidelines, patterns
* Quality of system, w.r.t. performance, safety, security, behavior metrics

4. Synthesize portions of software from models
* E.g. functional: Simulink, SCADE; Architectural: UML, AADL Code
* No synthesis or link to code in SysML, as SysML has only high-level concepts

Models as processable artifacts to guide the software engineering process
“Modeling is the new programming”

Provide more insights than code-only solution through relevant abstractlons and automatlon

Carne, bl(Mellon Unive I'blﬁ An Zo of AADL and Toolsets to Support the Engineering Sys D\STR\BUT\O\I STATEME\W A} This material has

zu,mneq e Me (mL .ersm o : se and unlim istri 15
Software Engineering Institute

MBSE — Not just SysML

Model-based systems engineering (MBSE) is the “formalized application of modeling to
support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and
later life cycle phases.” (INCOSE 2007)

SysML support capturing relationships among system functions, requirements,
developers, and users. But not the later development stages

Other modeling notations are required to

Capture hardware platforms, software architecture, behavioral semantics,
deployment of SW to HW, support safety or security assessment, performance
analysis, behavioral verification, memory budget validation, etc...

Carnegie Mellon University
Software Engineering Institute

16

Architecture Analysis & Design Language (AADL) Standard
Targets Embedded Software Svstems

The Physical System command

& Control
Aircraft, Car, Train
@ PO s
| R @

Physical Interface l l Deployed on @ sas Honeywell

Platform Component Utilizes united
’ Ok ~AVSI &
8AE International =8 & A\\/1®
AS 5506 Standard Suite g T

AIRBUS

Standards provide
long-term industry-wide
solutions to support
multi-organization
model-based engineering

In 2008 Aerospace industry initiative
chose AADL over SysML and other
notations as it specifically
addresses embedded software

Carnegie Mellon UIliVel'SitV An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
X i B 7 © 2021 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

17

http://www.sae.org/

Not just SysML vs AADL, larger aggregation of standards

Mission System System C t .
v ystem toncepts Subsystem Architecture

Requirements & Functions
e 2 T
o ;
a2 = (il G
E T
(o] O
e O+« T
- H Circuit board

] 1 .
% . 0 Hardware
; i platform

Tasking &

communication
Virtual System
Integration

W o

©

8§
V) 4o
>wn
~ >
awn

7

MODELILCA

Structures
‘\ MathWorks: Thermodynamics

System Integration &
Qualification

o o
BEE O
[

System Integration
& Assembly

Component Design &
Implementation

——— D5
SystemVerilog '!ih
b/

| S

Manufacture

Circuit logic

Embedded Software System

> AADL
L Fep;thon
FACE-

Model-driven

Integration &
Field Testing

(

Source code

Behavior

& $

System Integration
& Assembly

Fluid Dynamics Manufacture
Electrical
Controls &

Signals

An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems

Car negie Mellon Unive Tsity © 2021 Carnegie Mellon University

Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

18

Outline

Model Based Engineering at the SEI

Model-Based Engineering for Software-intensive systems using AADL

» Challenges of embedded systems — AADL to the rescue Why AADL?
* Model-Based System Engineering, AADL

« AADL Language Overview

« AADL Tooling

Carnegie Mellon Universitv An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
v © 2021 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

19

SAE International AADL Standard Suite (AS-5506 series)

Core AADL language standard [V1 2004, V2 2012, V2.2 2017]
- Focused on embedded software system modeling, analysis, and generation

- Strongly typed language with well-defined semantics for execution of threads, processes on
partitions and processor, sampled/queued communication, modes, end to end flows

- Textual and graphical notation, XML/XMI interface to ease processing by 3rd party tool

- V3 in progress: interface composition, system configuration, binding, type system unification

- http://aadl.info

Ongoing work to align AADL and SysML in a common workflow -> SEI, Adventium Labs, ANSYS

Standardized AADL Annex Extensions AADL Annexes in Progress

Error Model language for safety, reliability, security analysis [2006, 2015] * Network Specification Annex
ARINC653 extension for partitioned architectures [2011, 2015] * Cyber Security Annex
Behavior Specification Language for modes and interaction behavior [2011, 2017]
Data Modeling extension for interfacing with data models (UML, ASN.1, ...) [2011] | Roadmap

AADL Runtime System & Code Generation [2006, 2015] * Requirements Definition and Assurance Annex
FACE Annex [2019]

o Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution 20

Carnegie Mellon University
Software Engineering Institute

http://aadl.info/
http://www.sae.org/

What are AADL Components?

Application Components

System — hierarchical organization of
components [system

Process — protected address space

Thread — a schedulable unit of concurrent

execution /Thread 7

d o o e e e - /

Thread group — logical organization of

Data — potentially sharable data

Subprogram — callable unit of sequential
code

Data

Execution Platform & Device Components

Processor / Virtual Processor — Provides
thread scheduling and execution services

Processor

Memory — provides storage for data and
source code

Bus / Virtual Bus — provides physical/logical
connectivity between execution platform

components Gm

Device — interface to external environment

I] Device

Carnegie Mellon University An Overview of AADL :
- o))) v © 2021 Carnegie Mellon University
Software Engineering Institute

L and Toolsets to Support the Engineering of Safety-critical Systems

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution 21

What does AADL actually look like?

Wwhbs.basic*

Semi-formal semantics (

bscu* w2

Only architectural elements

ot

green_input selector*

>

signall emd nor emd nor output
2
pedall Select_Alternate select_alternate
>
i . . . cmd alt omd alt accumulator_input pressure_output 2ccumulator
79 -- Basic/naive version that abstracts all the valves with d
80 -- a selector subsystem. This selector subsystem hide t
81l -- the physical logic behind the selector, shutoff and meter/anti-skid
82 -- valves.
83 system implementation wbs.[EEENY extends wbs.generic
84 subcomponents
85 bscu : refined to system impl::bscu::bscu.basic; A dd f t It
86 -- The selector subsystem nnexes a uncuonaill -
87 selector : refined to system impl::valves::selector basic{Classifier Substitution Rule => Type Exte y
88 wheel : refined to system impl::wheel::wheel one input.i{Classifier Substitution Rule => Type Ex H
89 connections hd Error MOdellng
90 blue to selector : bus access blue pump.pressure output <-> selector.blue input; B h .
91 green to selector : bus access green pump.pressure output <-> selector.green input; [
o enavior
93 bscu _sel to selector : port bscu.Select Alternate -> selector.select alternate; H
94 bscu cmdnor to selector : port bscu.cmd nor -> selector.cmd nor; ° COde Generatlon
95 bscu_cmdalt to selector : port bscu.cmd alt -> selector.cmd alt;
96
97 selector to wheel : bus access selector.output <-> wheel.input;
98 end wbs.basic;|
Carn(tgil‘ Mellon L:IliV(‘I'Sity ?)an;r(\i\;:r\;:gr‘/:A’\i\ﬁ;ya;sz\;ﬁt{; to Support the Engineering of Safety-critical Systems giz?;i%z\ﬁ)ﬂ‘j;{gT;gsgxﬁ This material has been approved for public 22

Software Engineering Institute

Textual and Graphical Representation Example

system CarSystem
end CarSystem;

data MyBrakeData //:: Svsterm.imol *‘\\
end MyBrakeData; arSystem.imp
device BrakePedal brake_pedal

features BrakePeda

samples: out data port MyBrakeData;

samples
end BrakePedal;

brake_data

system BrakingSystem braKing

features BrakingSystem
brake_data: in data port MyBrakeData; \\‘; ey 4‘//
end BrakingSystem;

What system-level requirements to we want to verify?
system implementation CarSystem.impl

« Signal/data latency + Tread scheduling
subcomponents . : o .
braking: system BrakingSystem; ga:a :clnter;f;ce cc:jn3|stency I':'/lhread binding/CPU loading
brake pedal: device BrakePedal; ata rlow/dependency emory usage

connections » Security-Data Confidentality « Hazards & error flow

cl: port brake pedal.samples -> braking.brake_data;

—end CarS¥stem.impl;

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
=i)) v © 2021 Carnegie Mellon University release and unlimited distribution 23
Software Engineering Institute

An Example Model (graphical)

Producer_consumer_example_1_instance ThIS AADL model
Producer_prs
datazut — represents threads
.‘.“:_ 2 &._"‘:_ executing within
Threads T deeout_ 1 ’d_at_a'ﬂ _______ L Process processes (dedicated
address spaces), the
communications and
Memory * connections among the
Producer_ram Consumer_ram ComponentS, and the
eth binding of threads and
rocesses to computer
Process . eth & Hetn p
Producer_cpu Consumer_cpu resources (eg’ threads
L) to the processor on which
they execute).
(}arncgiv)/Ioll()nllnivorsity An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems D\STR\BUT\ON STATEMENTA]T? material has been approved for public

))) ©2021 Carnegie Mellon University release and unlimited distributior 24
Software Engineering Institute

AADL.: Modeling in the small

AADL modeling components: precise execution semantics

» Software: thread (group), process, data, subprogram

(group),
« Hardware: processor, memory, bus, device, virtual
processor, virtual bus

« Composite: system, abstract

Systemn S1

Supports system concepts of continuous control &

response processing
« Data and event flows, call/return, shared acces
» End-to-End flow specifications

Flows Speciication
Florey poadiy F1C pEl == pi2

Flerey padh F2 bl == 25

Periodic 10Hz

——————————————

Periodic 20 Hz

Thread 1
Thread 2 Yy
]

s

T:

¥

1
T

o

Sampling.Cunnemiun

e System implementation 51.mpl

Florer iplement ation of floews path FA
Flow padh FA: ptd -» ©1 = P2FS o= C3 o= P F7 = C5 o= pi2

(from AADLvVZ2 standard)

An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been approved for public
rel

lease and unlimited distribution 25

AADL.: Modeling in the large

Operational modes & fault tolerant configurations
* Modes & mode transition
Modeling of large-scale systems

« Component variants (refine) layered system modeling, packages, abstract, prototype,
parameterized templates, arrays of components, connection patterns

Accommodation of diverse analysis needs
« Extension mechanism (extends), , standardized extensions

(jdl'll(‘,g.‘,'i(‘ Mellon L'nivorsity An Overview of AADL and Tuo\sug to Support the Engineering of Safety-critical Systems

DISTRIBUTION STATEMENT A] This material has been approved for public
X . . © 2021 Carnegie Mellon University
Software Engineering Institute

release and unlimited distribution

26

Outline

Model Based Engineering at the SEI

Model-Based Engineering for Software-intensive systems using AADL

» Challenges of embedded systems — AADL to the rescue Why AADL?
* Model-Based System Engineering, AADL

« AADL Language Overview

« AADL Tooling

Carnegie Mellon Universitv An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
v © 2021 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

27

AADL capabillities

AADL is highly tunable, with a restricted set of concepts
* Demonstrated many use cases, 1600+ academic publications

AADL as a backbone, federating multiple activities
« analysis through generation of intermediate models + external tools

Non exhaustive list of analysis capabilities

» Integration to a process: with SysML, Simulink, SCADE
* Architectural pattern checks:
MILS, ARINC, Ravenscar, Synchronous
* Model checking:
» Timed/Stochastic/Colored Petri Nets
» Timed automata et al.: UPPAAL, Versa, TASM
» Scheduling: MAST, Cheddar, CARTS

Performance evaluation: real-time and network calculus
Fault analysis: COMPASS, Stochastic Petri Nets, PRISM
Simulation: ADeS, Marzhin

Energy consumption of SoC: OpenPeople project

Code generation: SystemC, C, Ada, RTSJ, Lustre
WCET analysis: mapping to Bound-T

AADL demonstrated its suitability to support various analysis for the real world

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
] J © 2021 Carnegie Mellon University release and unlimited distribution 28

Software Engineering Institute

AADL commercial toolchains

Multiple AADL toolchains exist, they can be easily combined thanks to the textual syntax.
Examples:
+ OSATE (SEI/CMU) https://osate.org/
» Eclipse-based tools. Reference implementation
» Textual and graphical editors + various plug-ins for latency, processor utilization, memory
utilization, data consistency, security, safety analysis (MIL STD 882E, ARP4761), ARINC653

« CAMET (Adventium Lab) https://www.adventiumlabs.com/curated-access-model-based-
engineering-tools-camet-library
» Extensions to OSATE to support other analysis (Multiple Independent Levels of Security
(MILS), Framework for Analysis of Schedulability, Timing and Resources (FASTAR)
« SCADE Architect (ANSYS Esterel) https://www.ansys.com/products/embedded-
software/ansys-scade-suite

» Eclipse-based tools. Combine SysML, AADL and other formalisms, code generation

« AADL Inspector (Ellidiss) https://www.ellidiss.com/products/aadl-inspector/
» Lightweight editor, model simulation, scheduling analysis

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems ~ DISTRIBUTION STATEN VENT A]] This material has been approved for public
{=i . J © 2021 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

29

https://osate.org/
https://www.adventiumlabs.com/curated-access-model-based-engineering-tools-camet-library
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ellidiss.com/products/aadl-inspector/

Wrap-Up

Model-based systems engineering (MBSE) is the “formalized application of modeling to
support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and
later life cycle phases.” (INCOSE 2007)

SysML support capturing relationships among system functions, requirements,
developers, and users. But not the later development stages of Systems Engineering

Prediction of runtime characteristics at different fidelity
Analyzable models to drive development

AADL captures at a high-level: hardware platforms, software architecture, behavioral
semantics, deployment of SW to HW

AADL supports safety or security assessment, performance analysis, behavioral
verification, memory budget validation, etc...

As a Standard, common modeling notation across organizations

(]1{1‘11(5gi(‘ Mellon Lvni\‘(-rsity A yo?(\:H:q‘:TP‘L:HSJ’T‘U;:‘L to Support the Engineering of Safety-critical Systems E)P\‘S:Z;\:J':\‘Oﬂ\‘l im’iﬁ:" Ltw This material has been approved for public
Software Engineering Institute 4

Outline

Introduction to SEI
Model-Based for Software-intensive systems using AADL
AADL in practice

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
. . ' . © 2021 Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

31

|ldeal Systems Engineering Process from models to code

Let’'s assume we plan at implementing our own UAV control e <SS
logic, using the Crazyflie as an example /”*'"'=‘"‘*"ﬂf~~ E
AAD\
Steps
» One high-level requirement: piloting the UAV SIMULINK'
» Modeling the functional chain @C code

* Refining it down to a logical and physical chain
And then performing verification, validation and simulation

Using AADL as backbone for all models

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems D his material has been approved for public
o . . 7 © 2021 Carnegie Mellon University reloase and unlimited distributio 32
Software Engineering Institute

https://iconscout.com/icon/c-programming

AADL in practice: Bitcraze Crazyflie

Lightweight UAV by Bitcraze
 https://www.bitcraze.io/crazyflie-2/

Hardware:
* 2 x MCU : Cortex-M4 + nRF51822
» IMU: MPU-9250 + Pressure Sensor LPS25H
* Bluetooth Low Energy radiocommunication

Software:
* Regular control/command loop
* Manually implemented, in C + FreeRTOS

(]arn(ygi(x Mellon L:IIiV(‘I'Sity An Ove of AADL al dT \ L to Support the Engineering of Safety-critical Systems

2(]21(‘ negie Mellon Uni

Software Engineering Institute

D\STR\EUT\ON STATEMENT A] This

and unlimited distribution.

33

https://www.bitcraze.io/crazyflie-2/

Crazyflie architectures

Always ON power domain Power switched by nRF51 (VCC)

10DOF IMU
“t - 3-axis accelerometer
H - 3-axis gyro
RF power : - 3-axis magnetomer

amplifier - Pressure sensor
Push
button Motor driver
12¢
SPI/12C/GPIO/PWM ‘
) /OW/GPIO
45V Power supplies : . EEPROM
and battery charger Charge/NBAT/VCC Expansion port

USB Data

HUSB port —— sz

Crazyflie 2.0 system architecture

From https://wiki.bitcraze.io/projects:crazyflie2:architecture:index

From https://wiki.bitcraze.io/doc:crazyflie:dev:fimware:sensor to control

Magn. _.--7

Optional

250 Hz

degree delgls

Desired
value

' Motors
_t

Commander
(Pilot)
500 Hz
Motors
= Gyro

Carnegie Mellon UIlivel‘Sity An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems

. . . © 2021 Carnegie Mellon University
Software Engineering Institute

release and unlimited distribution.

DISTRIBUTION STATEMENT A] This material has been approved for public

https://wiki.bitcraze.io/projects:crazyflie2:architecture:index
https://wiki.bitcraze.io/doc:crazyflie:dev:fimware:sensor_to_control

ldeal Systems Engineering Process from models to code

Define a model-based process that

Requirements,
Design, ..

<<allocates>>

Architecture

Detailed design

<<implements>>
Application Code

Middleware

<<configures>>

Carnegie Mellon UniV(‘I'SitV An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
) . . . 7 © 2021 Carnegie Mellon University
Software Engineering Institute

release and unlimited distribution.

35

ldeal Systems Engineering Process from models to code

Define a model-based process that
» Separates concerns

- Runtime architecture ::= configured middleware
- Functional architecture ::= components

Requirements,

Design, ..

allocates>>

Runtime
Arch.

<<refijnhes>>

Detailed
design

<<configures>>

<implements>>

Application Code

Middleware

Carnegie Mell()n University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems

© 2021 Carnegie Mellon University

Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

36

ldeal Systems Engineering Process from models to code

Define a model-based process that
» Separates concerns
- Runtime architecture ::= configured middleware
- Functional architecture ::= components Runtime
 Mitigates impact of functional code
- Using safe functional design approach
- Visible interface and metrics, bounded risks

Requirements,

allocates>>

<<configures>>

Middleware

Carnegie Mell()n University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems

DISTRIBUTION STATEMENT A] This material has been approved for public
.)) © 2021 Carnegie Mellon University
Software Engineering Institute

release and unlimited distribution.

ldeal Systems Engineering Process from models to code

Define a model-based process that T ——
« Separates concerns Lk
- Runtime architecture ::= configured middleware
- Functional architecture ::= components

 Mitigates impact of functional code

Runtime Arch.

- Using safe functional design approach A

- Visible interface and metrics, bounded risks ‘§

 Leverages architectural models to gz

- Generate middleware from architecture Y
Carnegie Mellon University

Software Engineering Institute

38

ldeal Systems Engineering Process from models to code

Define a model-based process that
« Separates concerns Lk
- Runtime architecture ::= configured middleware

- Functional architecture ::= components

 Mitigates impact of functional code

Requirements,

Runtime Arch.

— | -
- Using safe functional design approach A keverifes>>
- Visible interface and metrics, bounded risks ‘§
 Leverages architectural models to gs
- Generate middleware from architecture Y
- Enable formal methods
* Both at model-level and implementation-level —
<<verifes>>
Carnegie Mellon University

Software Engineering Institute

39

ldeal Systems Engineering Process from models to code

Define a model-based process that
« Separates concerns P
- Runtime architecture ::= configured middleware

- Functional architecture ::= components

 Mitigates impact of functional code

Requirements,

Runtime Arch.

] “
- Using safe functional design approach A keverifes>>
- Visible interface and metrics, bounded risks ‘§
 Leverages architectural models to gs
- Generate middleware from architecture Y
- Enable formal methods
* Both at model-level and implementation-level —

<<verifes>>

» Connects to Model-Based Systems Engineering

Certification as long term objective

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
57" J © 2021 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

40

Using AADL — Outline

1. Modeling Architectures

Requirements,
Design, ..

Runtime Arch.

[

|~

<<verifes>>

<<generates>>

Middleware

-

<<verifes>>

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
) : . B 7 © 2021 Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

41

AADL Functional chain library

Build a package with all functions as abstract components

Fe—————————— 1 re—————————— '
1 1 1 1
I I I i I ¥ i i
1 Accelero 11 Pilat 1 Crazyfhie_Functional_Chain
1 1 1 1
1 1 1 1
e - Emm————————— -
——————————— Y mmm—————— . FaN
1 1 1 1 1
1 1 1 1 1
1 Controller 11 Gyro 1 1
1 1 1 1 1
1 1 1 1 1
T — ————— - - - T — ————— - - - 1
P e ——— .]
1 I I
1 I I
: Sensor_Fusion : 1 Magneto 1 Crazyflie_Functional_Chainimgl
1 1
1 I [
[1 o e e e -
o 1
1 1
1 1
1 Motors 1
1 1
1 1
- -l
Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
=i g J ©2021 Carnegie Mellon University release and unlimited distribution 42

Software Engineering Institute

AADL functional chain implementation

Abstract data

ca "
1 Gyro_In Fusion ! ! Motors !
H Crazyflie_functional::Sensor_Fusion sGyro_In functional::Controlle) Crazyflie_functional::Motors
1 i i i
1 Motor_Out) 1 Motor_In 1
- 1 1
r Acc A{:t:alaru_ﬂut-l & i Accelero_In Data_F_0O : H :
: Crazyflie_functional::Accelero 1 1 : : : e !
I 1 I i I
1
e - H 1 H !
it ittt ¥ eiieptr el o oo ! i i .
: Magneto Magneto_Out | Magneto_in i | Function as abstract
' : il 1
1 Crazyflie_functional::Magneto 1 TC
i i i component
L e . !
. 7
(Jdl‘ll(!g.‘,‘i(‘ Mellon L'nivorsity Aﬁ;(w:ﬂ:@;:?%:uiiﬂT‘u;\;T‘L to Support the Engineering of Safety-critical Systems z‘izzﬁﬂw‘oﬂ\‘l ﬂ:ﬂ‘susm (Ay} This material has been approved for public 43

Software Engineering Institute

Crazyflie Hardware

Same strategy: library of components + system implementation

-

I MPUSZ50
Crazyflie_Hardware:MPU32 I
Iﬂ.ﬂ — — —_— — —_— — I
— —_— — —_— — —_— — —_— — I
e — 1' (II'V;m_bu_Elardwara::Prn-pallar I
I 1zc e STM32F405 1]
Buses:12C:12C.impl |3 i2c_bus Crazyflie_Hardware:STM32ZF405 I-I I
- e e s . .. I — — — :) uPropeller I
1
F A— I
tE epl bus Crazyflie_Hardware:PWM
Crazyflie_Hardware:nRF51822 = lr M3 'I I
I I | v M |
pwm.l:lu - — owim_bus {ardware::Propeller
ca ate II I
[I - |
uart_bus i I
I c bus= pia —I'I
N D DN B EE EEe e w R — raeyflie_Hardware:Propellar
I ate | I
I ART I 'S } J
{ Buses:UART:UART.impl } I I I S I S S S S . .. | e — J
e I 7
Devices | CPU { Bus components
- = sring of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
“;I BICT i UTLVETSIty © 2021 Carnegie Mellon University " e e reloase and unlimited distbution. e o PR 44
Software Engineering Institute

Crazyflie Complete System

’~
MPU9250
Crazyflie_Hardware:zMPUS250pgEg
"
i2¢_bu]
[i e e I'*n
nRF51822_Firmware { I:‘: Ggpasflie_Hardwarepwm_buse
I Crazyflie_Software:nRFS1822_Firmware I .
1 S
i cio c13
Syqllmk_Packei Syslink_Packi Rate_2 4 rate’ MZ
I 0 I l'l Rate_3 razyflie_HatdwareEH bus
Syslink_Packet_Tx
ke - Rate_d
1 . I
7
_— . e . . . — e o o g o e o o
! / razyflie Hal dwarepwm_busr
] /
H Buses:I2C:2C.impl ‘!f
Actusl_Praceqsos_Binding [0] Actual_Pracegser_Binding [0]
! /g razyflie Hatdwarepwm_buse
! 7
H '3
22 STN‘S
Crazyflie Hardwara::nHF§1822I i2c_bus Crazyflie_Hard TM32F405
- uart_bus :> L
spi_bus
uart_bus pwm_bus cg /l_ PWM _I\)
& [crazyflie_t PWM
UART
4 Buses:UART:UART.impl ¥
“

Software Processes Hardware/Software Binding

DISTRIBUTION STATEMENT A] This material has been approved for public

An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
release and unlimited distribution

(Ail'll(‘,gl(‘ ‘\/I“llf)ll L,I}IV'(‘FSITy" © 2021 Carnegie Mellon University
Software Engineering Institute

Functional / Physical bindings (allocation

Model gateway

Code generation

@C code

Analysis

~
(Functional N
Crazyflie_functionali:Crazyflie_Functional_Chainimpl
— i
i
©)
(@) /
o— i Gyre i i 7 Fusion Mot
4+ razyfiic_tunctiong! e ‘azyfie_tiincgipnal: Sens or_Fusic razyflie_tunctional:Maotors
ytle,_functionglcs yfil._féincyipnals:Sensor_F Crazyflie,_functional:Motc
c v " Mator_in
Gyrajin —
S 7 -
L Acfelera
/
I
-Maanets c3UbMagneto_In
sgnets- Out I
1 / 5
/ \
/ i
\. / LY J
- - + -
= 3 v
htus Funfon g 1 T -
- 7 \
(7 Setos puneush ardefus] B
7 Grazyflie_Systom:Crazyflie_Sybtem.impl
i A\
! kN
/ \
MPUS250 7 j
Crazyflie_Hardware:MRl 9250 s 2 1
DOFé| STM32F405_Firmware ’ b
Flamres Crazyfiie_Software:STM32F405_Firmware.impl rdwarepiim. bisy
T ize bu
/
1
]
/ Rateld
i
i
/
/
/
f— J
[3
© [owestezz Fimware |
Q azyflie_Software:nRF51822 Firmwa
. Syglink_Packot
T
> '
= \ 177
\ 8 \
o Actual Connecthy Bindg o sctea proceny siang 0
Actusl prazes . incing (0] \
\
151822 7 \ STM32FA05 7 P
Crazyflie_Hardware:nfuart bus | c2 art_bus Hardware:STM3ZF405 Crazyflie_Hardware:PwWM »
A s
(BuseszUARTZUART.impl ¥
\. J
\

Carnegie Mellon University
Software Engineering Institute

An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

46

https://iconscout.com/icon/c-programming

Using AADL — Outline

1. Modeling Architectures : AADL Requirements

Design, ..

2. Architectural pattern enforcement

| A

<<verifes>>

<<generates>>

Middleware

-

<<verifes>>

Carnegie Mell()n Universitv An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
A o R © 2021 Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

47

Architectural pattern enforcement

AADL is an Architecture Design Language
» What about an Analysis Design Language ?

Use cases: define project-specific analysis

 Enforcing architectural constraints
- E.g. Ravenscar, security, ARINC653, OS configuration, etc.

 Evaluating contracts, e.g. compatibility of configuration
- E.g. controller implementation must be triggered at the right period

Use of Resolute, by Collins, inherit from REAL: Requirement Enforcement and Analysis
Language by Olivier Gilles PhD thesis

» ADSL to check static invariants: patterns, contracts, requirements
* Project-specific analysis, mining architecture models

(jarn(‘,gi(‘ Mellon L'niv(-rsity HV?T(\:H:Q‘:TE‘L:uﬁ’T‘ue\r:‘t to Support the Engineering of Safety-critical Systems z‘iziw:ﬂ\‘oﬂ\‘lﬂgsusxL:} This material has been approved for public
Software Engineering Institute

48

Architectural constraints — Example

Ravenscar profile for mono-core systems correctly applied

system ravenscar_sys

annex resolute {**

prove ravenscar_rule_component(this) -- Implementation must match Ravenscar constraints
V4

end ravenscar_sys;
is_Scheduling_Configured(c: component) <=

** "Thread " ¢ " is correctly configured" **
has_property(c, Timing_Properties::Compute_Execution_Time) and -- Capacity

has_property(c, Timing_Properties::Period) and -- Period
has_property(c, Timing_Properties::Deadline) and -- Deadline
has_property(c, Thread_Properties::Priority) -- Priority
(Jarncgit‘ Mellon L'nivorsity An Overview of AADL and Tuo\mf to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public

© 2021 Carnegie Mellon University release and unlimited distribution

Software Engineering Institute

49

Using AADL — Outline

1. Modeling Architectures : AADL Requirements,

Design, ..
2. Architectural pattern enforcement : Resolute
3. Code generation and middleware
- | A
A K<verifes>>
|
o
e
)
¥ >
——
<<verifes>>
(]arncgiv Mellon UIIiV(‘I‘Sity //jn O;frvwew orAA’\Eh and Toolsets to Support the Engineering of Safety-critical Systems ~ DISTRIBUTION | STATEMENT A]] This m aterial has been approved for public

))) © 2021 Carnegie Mellon University release and unlimited distribution 50
Software Engineering Institute

Code generation and middleware
Architecture-centric process

AADL captures tasks, queues, buffers, protocols
= Generate middleware stack on top of minimal runtime/real-time OS

AADL Process AADL Thread as AADL Data as
as Partition Ada Task object Ada Protected object

Generated code

Middleware
code: req.
dispatching

Concurmency view

Drivers/Protocols

PolyORB-HI runtimes

) d LEON TSIM
Carn(‘,gi(‘ Mellon U . Physical view &r J / TRIBUT\ON STATEMENT A] This material has been approved for public
- - == and unlimited distributior

Software Engineering Institute

Code generation and middleware: Ocarina
http://www.openaadl.org

Contributions are supported by tools

1. Ocarina: AADL model “compiler”, FLOSS
» Compiler architecture, AADL front-ends, code generation backends

2. PolyORB-HI runtimes
» Ada High-Integrity profiles, with Ada native and bare board runtimes
+ C POSIX or RTEMS, for RTOS & Embedded,
» Time and Space partitioning, e.g. ARINC653 C APEX, AIR, Xtratum

Generated code quality tested in various contexts
« WCET, quality, code coverage, etc.
* Meet High-Integrity coding profiles

- Ravenscar model of computations, static configuration of all elements (memory, buffers, tasks, drivers, etc.), no
dynamicity

Carnegie Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
=) v © 2021 Carnegie Mellon University release and unlimited distribution

Software Engineering Institute

http://www.openaadl.org/

Using AADL — Outline

1. Modeling Architectures : AADL Requirements,

Design, ..

2. Architectural pattern enforcement: Resolute

3. Code generation and middleware:
Ocarina and PolyORB-HI

4. V&V strategy
a) Code level

[

| A

<<verifes>>

generateg>>

b) Model-level

PolyORB-HI

-

<<Vﬁf|f.ﬁ§>>

Cﬂrll(ﬁ"’i(‘ Mellon L;IIiV(‘I'SitV An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems ~~ DISTRIBUTION STATEMENT A]] This m. aterial has been approved for public
= J © 2021 Carnegie Mellon University release and unlimited distribution
Software Engineering Institute

53

V&V Strategy — Code-level

Use SPARK2014 Ada extensions to annotate runtime
 High-Integrity profile, Ravenscar Model of Computation

 Type invariants, data flows, pre/post conditions

SPARK Analysis results Total | Flow Provers Justified Unproved
Data Dependencies 35 32 3
Flow Dependencies 6 6 .
Initialization 58 55 . 3
Run-time Checks 281 281 (CVC4

93%, Triv-

ial 7%)
Assertions . . .
Functional Contracts 102 63 (CVC4 | 39

75%, Triv-

ial 25%)
Concurrency 14 . . 14
Total 496 93 (19%) | 344 (69%) 59 (14%)

Carnegie Mellon University
Software Engineering Institute

An Overview of AADL
© 2021 Carnegie Mellon University

and To

olsets to Support the Engineering of Safety-critical Systems
it

DISTRIBUTION STATEMENT A] Th
rel

lease and unlimited distribution.

is material has been approv

ed for public

54

V&V Strategy — Model-level

Requirement to assess model-level properties
* Prior to code generation, ensures model is “safe”
» Exploitation of AADL static and behavioral semantics

Careful definition of V&V strategy: “right property/right tool”
» Deadlock freedom: intrinsic property of Ravenscar
 Configuration: static property with RESOLUTE (model), SPARK (code)
» End-to-end latency ?
» Scheduling analysis?

.
 Safety Analysis?
IS ¢
(Jdl‘ll(‘,g_‘,‘i(‘ Mellon University An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
> J © 2021 Carnegie Mellon University release and unlimited distribution 55

Software Engineering Institute

Flow latency analysis — OSATE

E: weinn

MT-ﬂ-nr: o

Crazyflie_functional:Magneto

Latency analysis with preference settings: asynchronous system/partition end/worst case as max compute execution timef/best ca:

Latency results for end-to-end flow 'f_etefl’ of system 'Crazyflie Functional_Chain.impl'

Result

abstract Gyro

abstract Gyro

connection Gyro.Gyro Out -> Fusion.Gyro In
abstract Fusion

abstract Fusion

connection Fusion.Data F_Out -> Controller.Data F_In
abstract Controller

abstract Controller

connection Controller. Motor_Out -= Motors.Mator In
abstract Motors

abstract Motors

Latency Total

Specified End To End Latency

End to end Latency Summal

Min Actual
0.0ms
0.1ms
0.0ms
0.0ms
0.2ms
0.0ms
0.0ms
0.2ms
0.0ms
0.0ms
0.1ms
0.6ms
0.0ms

Min Specified

0.1ms

0.2ms

0.2ms

0.1lms
0.6ms

Min Method
first sampling
specified

no latency
sampling
specified

no latency
sampling
specified

no latency
sampling
specified

Max

0.3n

0.4n

0.4n

0.5n
1.6m

/

Minimum actual latency total 0.800ms is greater or equal to expected minimL
Maximum actual latency total 9. 60ms exceeds expected maximum end to er

22 Jitter of actual latency total 0.600..9.60ms exceeds expected end to end late
23
24

Carnegie Mellon University
Software Engineering Institute

An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems

© 2021 Carnegie Mellon University

release and unlimited distribution.

DISTRIBUTION STATEMENT A] This material has been approved for public

56

Scheduling Analysis — AADLInspector / Cheddar

STM32F405_Firmware.impl*
Implements STM. 32F405_FIrr\'||m'1am'_.2
L3

3
D%/f TIZ
bl T TTOF_Reader
_Dpta cas TOF_Data » TOF_Value ate
T T Fiow Reader 1
w_Data Flow_Data Flow_Value
ca3 I 1 - cia
lmm e -
Flow_Value
]
Syslink_Packet_Tx === = = == Syt Tam " 100 200 300 400 500 600 T00 800 900 1000 1100 1200 1300 1«
2 Syslink_Tx N
fs' 2
i e ——
I u .
‘ ;Sy&Iink_Rx H 3 . I -
Sy"‘"k‘Pci He 7 power_management | B 1 B

7 main_loop —
) nrf51822

[—]—E{) uart
S Mirtuallink

H-Eg i2c
o Mirtuallink

Carnegie Mellon UniV(‘I'bltV An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
v © 2021 Carnegie Mellon University release and unlimited distribution 57

Software Engineering Institute

FHAand FMEA — OSATE wy i

features
PositionReading: out data port DataDictionary::Position;
flows
f1: flow source PositionReading {
Latency => 2 ms .. 3 ms;

Error Source origin amer ENV2 (55

error propagations

° Used in FHA aS “Error” use types ErrorlLibrary, FHAErrorLibrary;

use behavior ErrorModellLibrary::Simple;
PositionReading: out propagation {ServiceOmission};

* propagated type -> hazard Flous

efl:error source PositionReading {ServiceOmission} when Failed;

properties
EMV2::hazard =>
[crossreference => "1.1.3";

failure => "Loss of sensor readings";
phase => "all";

description => "No stabilator position readings due to sensor failure";

severity =» Criticalj;
criticality => Remote;
comment => "Becomes major hazard, if no reundant sensor";
1
applies to Failed;
end propagations;
#x);

end PositionSensor;

Component Error Crossrefe Functional Failure (Hazard) Operatior Environm Effects of Hazard Severity Criticality Verificati Comment
PilotCollectiveCommandGr Failed on DesiredPosition 1.1.9 Grip Failure all Pilot cannot provide des Critical Remote Becomes major hi
StabilatorPositionSensor Failed on PositionReading 1.1.3 Loss of sensor readings all Mo stabilator position re Critical Remote Becomes major hi
Component Initial Failure Mode 1st Level Effect Failure Mode 2nd Level Effect
StabilatorPositionSensor Failed StabilatorPositionSensor.PositionReading:{ServiceOmission} StabilatorPositionSensor.PositionReading-{}->CLTask.Position StabilatorControll
‘arnecie Me niversitv An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] This material has been approved for public
Car negie Mellon Unive Tsity ©2021 Carnegie Mellon University release and unlimited distribution 58

Software Engineering Institute

Fault-Tree Analysis Support — OSATE

Use of composite error behavior
* FTA nodes

Use of component error behavior
* Incoming error events + combination

Walk through the components hierarchy
» Generate the complete fault-tree
» Focus on specific AADL subcomponents

component error behavior
transitions
tl : Operational -[DOFs{ValueErroneous} or
processor{Lost}
1-> Failed;
propagations
Failed -[]-> Rate 1{ValueErroneous};
end component;

Carnegie Mellon University
Software Engineering Institute

© 2021 Carnegie Mellon University

An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems

' "Crazyflie_Functional_flow.impl'
= 'Crazyflie_Functional_Flow.impl'
" 'Crazyflie_Functional_flow.impl'
wi % 'Crazyflie_Functional_flow.impl'
'Gyro'
'Acc’
'Q 'Crazyflie_Functional_flow.impl'
'Magneto’
'Optical_Flow'
‘TOF'
~[] 'Fusion’
¥ 'Fusion’
(. 'Fusion’
"% 'Fusion’
> 'Fusion'
[] 'Fusion' incoming 'Accelero_In'
] 'Acc’ outgoing Accelero_Out’
‘Acc’ outgoing 'Accelero_Out’
['Fusion’ incoming 'Gyro_In'
~[] "Gyro' outgoing 'Gyro_Out’
'Gyro' outgoing 'Gyro_Out’
*[] 'Fusion' incoming 'Magneto_In'
~[] 'Magneto' outgoing 'Magneto_Out’
'Magneto’ outgoing 'Magneto_Oul
=[] 'Fusion' incoming 'Optical_Flow_In'
['Optical_Flow' outgoing 'Optical_Flo
'Optical_Flow' outgoing 'Optical_Fle
['Fusion’ incoming 'TOF_In'
~[] 'TOF outgoing 'TOF_Out'

Error Model Element/Type
enor state Faled
“Xor in composite state
"Xor in composite state
“Xor in composite state
‘enor state ‘Faded
emor state ‘Faied
“And’ in composile state
enor state Faled
enor state ‘Faded
enor state ‘Faled
emor state ‘Faded
"Xor' in transition t1
“Xor in transition 11
"Xor in transition t1
“Xor in transition 11
{valueErmor}
{valueEror}
{valueError} from emor source "ErorSource”
{valueErmor}
valueEmor}
{valusError} from emor source "ErorSource”
{valueErmor}
{valueError}
{valueError} from eror source "Emorsource”
{valueEmor}
{valueEror}
{valueError} from emor source "ErorSource”
{valueErmor}
valueEmor}

Compu Specifie Event/Gate Type Dependent Event

a.08-09
3.0808
2.08-09

2.0e-08

1.0e-18

10209
1.02-09
10209
1.0e-09

10209

1.0e-09
10209

1.02-09
1.0e-09
1.02-09

or gate
or gate

¥or gate

xor gate

Basic event

Basic event

And gate

Basic event

Basic event

Basic event
Intermediate event
¥or gate

xor gate

*or gate

xor gate
Intermediate event
Intermediate event
Basic event
Intermediate event
Intermediate event
Basic event
Intermediate event
Intermeiate event
Basic event
Intermediate event
Intermediate event
Basic event
Intermediate event

Intermediate event

no

3 & 28 8 3838238383322 3833323832833 233a33

release and unlimited distribution.

DISTRIBUTION STATEMENT A] This material has been approved for public

Using AADL — Conclusion

1. Modeling Architectures : AADL Requirements, FE]
2. Architectural pattern enforcement: Resolute

3. Code generation and middleware
Ocarina and PolyORB-HI

A K<verifes>>
4. V&V strategy :
a) Code level: SPARK2014 2 >
b) Model-level: OSATE ecosystem

c) Model checking (not shown)

Solvare Analgzers
<<verifes>>
S . .
.
5. Systems Engineering: SysML and Capella (see adventium Labs taik)
Cﬂl’ll(‘/("i(‘ Mellon L;IIiV(‘I'SitV An Overview of AADL and Toolsets to Support the Engineering of S: afety-critical Systems ~~ DISTRIBUTION STATEMENT A]] This material has been approved for public
=i J ©2021 Carnegie Mellon University release and unlimited distribution 60

Software Engineering Institute

Conclusion

Just an overview of AADL capabilities.

To learn more or collaborate, contact us at info@sei.cmu.edu.

More resources

SEI AADL Library (all papers, technical reports, etc.):
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=453645

SEI AADL resources:
https://www.sei.cmu.edu/our-work/projects/display.cfim?customel datapageid 4050=191439

Carnegie Mellon University
Software Engineering Institute

© 2021 Carnegie Mellon University lease and unlimited distribution.

An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems DISTRIBUTION STATEMENT A] Thi
re

is material has been approved for public

61

mailto:info@sei.cmu.edu
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=453645
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439

	An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
	Slide Number 2
	Outline
	Outline
	Making Critical Systems Safer and More Secure
	Model-Based Engineering for Cyber-Physical Systems
	Before You Even Write a Line of Code…
	Outline
	We Rely on Software for Safe System Operation
	The Safety-Critical Embedded Software System Challenge
	High Fault Leakage Drives Major Increase in Rework Cost
	Technical Challenges in Safety-Critical Embedded Software Systems
	Analysis of System Properties via Architecture Model�A Contribution to Single Source of Truth�
	Outline
	Model-Based System/Software Engineering �Overarching objectives
	MBSE – Not just SysML
	Architecture Analysis & Design Language (AADL) Standard �Targets Embedded Software Systems
	Not just SysML vs AADL, larger aggregation of standards
	Outline
	 AADL Standard Suite (AS-5506 series)�
	What are AADL Components?
	What does AADL actually look like?
	Textual and Graphical Representation Example
	An Example Model (graphical)
	AADL: Modeling in the small
	AADL: Modeling in the large
	Outline
	AADL capabilities
	AADL commercial toolchains
	Wrap-Up
	Outline
	Ideal Systems Engineering Process from models to code
	AADL in practice: Bitcraze Crazyflie
	Crazyflie architectures
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Using AADL – Outline
	AADL Functional chain library
	AADL functional chain implementation
	Crazyflie Hardware
	Crazyflie Complete System		
	Functional / Physical bindings (allocation)
	Using AADL – Outline
	Architectural pattern enforcement �
	Architectural constraints – Example
	Using AADL – Outline
	Code generation and middleware�Architecture-centric process
	Code generation and middleware: Ocarina�http://www.openaadl.org
	Using AADL – Outline
	V&V Strategy – Code-level
	V&V Strategy – Model-level
	Flow latency analysis – OSATE
	Scheduling Analysis – AADLInspector / Cheddar
	FHA and FMEA – OSATE �
	Fault-Tree Analysis Support – OSATE
	Using AADL – Conclusion
	Conclusion

