
1
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

An Overview of AADL and
Toolsets to Support the
Engineering of Safety-critical
Systems
John Hudak, Jerome Hugues

SSD/ACPS/MBE

2
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

DM21-0067

3
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

Model Based Engineering at the SEI
Model-Based for Software-intensive systems using AADL
• Why AADL?
• MBSE .. a collection of standards
• AADL Overview
• Wrap-up

4
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

Model Based Engineering at the SEI
Model-Based for Software-intensive systems using AADL

5
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Making Critical Systems Safer and More Secure

Modern embedded systems need to be both safe and secure.
As we have seen, the pace and scale of the development of
these systems means traditional methods cannot keep up.

Research to Practice
The SEI works to rapidly move ideas from research in
embedded systems – conducted either here at the SEI, in
academia, or in industry – to practice.

6
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Model-Based Engineering for Cyber-Physical Systems

Create the best design
that holds up over time
as the system evolves.

Test the design without
having to write any code.+ = Build a single model to assess

hardware and embedded software
before the system is built.

SAE AADL / ACVIP

Standardized language and
process for the engineering
safety-critical systems.

OSATE

Open Source AADL toolset
for performing verification
and validation (V&V).

DoD Transitioning

Maturity increased through
pilot projects and trainings.

7
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Before You Even Write a Line of Code…
AADL allows you to design the entire system and see where
the problems may occur. Then you can change the design
of the system to eliminate those errors.

Being able to perform a virtual integration of the software,
hardware, and system is the key to identifying problems
early – and changing the design to ensure those problems
will not occur.

• SAE Avionics AADL
standard adopted in
2004

• Focused on embedded
software system
modeling, analysis, and
generation

• Strongly typed language
with well-defined
semantics

• Used for critical systems
in domains such as
avionics, aerospace,
medical, nuclear,
automotive, and robotics

About AADL

8
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

Model Based Engineering at the SEI
Model-Based Engineering for Software-intensive systems using AADL
• Challenges of embedded systems – AADL to the rescue Why AADL?
• Model-Based System Engineering, AADL
• AADL Language Overview
• AADL Tooling

9
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

We Rely on Software for Safe System Operation

Breakdown in human intensive
safety assessment process

Embedded software systems
introduce a new class of problems

not addressed by traditional
system safety analysis

10
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

The Safety-Critical Embedded Software System Challenge

Problem:
Software increasingly dominates safety and mission critical system development cost.
80% of issues discovered post unit test.
Solution: Early discovery of system level issues through architecture modeling, virtual
Integration and incremental analytical assurance.
Approach:
International standard based research driven technology matured into practice through
pilot projects and industry initiatives. (SAE International Aerospace Standard AS-5506B)
Development of an open source research prototyping platform continually enhances
analysis, verification, and generation capabilities.

Reducing Defect Leakage through Early Analytical Assurance is Critical

11
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

High Fault Leakage Drives Major Increase in Rework Cost

5x

Software
Architectural
Design

System
Design

Component
Software
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Requirements
Engineering

300-1000x

Where faults are introduced
Where faults are found
The estimated nominal cost for fault removal

20.5%

1x

20%, 16%

10%, 50.5%

0%, 9% 80x

70%, 3.5% 20x

Sources:
NIST Planning report 02-3, The Economic Impacts of Inadequate Infrastructure
for Software Testing, May 2002.
D. Galin, Software Quality Assurance: From Theory to Implementation,
Pearson/Addison-Wesley (2004)
B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

80% late error discovery
at high repair cost
80% late error discovery
at high repair cost

10% errors introduced
80% late error discovery,
20-100x cost to fix

Aircraft industry has reached limits of affordability due to
exponential growth in SW size and complexity.

Major cost savings through rework avoidance by
early discovery and correction

A $10k architecture phase correction saves $3M

Total System Cost
Boeing 777 $12B

F-35 $59B

Software as % of total system cost
1997: 45% → 2010: 66% → 2024: 88%

Post-unit test software rework cost
50% of total system cost and growing

70% Requirements & system
interaction errors introduced
3.5% are detected,
1x cost to remove

12
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Technical Challenges in Safety-Critical Embedded
Software Systems

System Engineer
Control Engineer

System
Under
Control

Control
System

Physical Plant
Characteristics

Operator
Error

Sy
st

em
 U

se
r/

En
vi

ro
nm

en
t System Hazards

Application Developer

Compute
Platform

Runtime
Architecture

Application
Software

Embedded SW System Engineer

Time-sensitive
Processing

Measurement units
Boolean, integer,
real, vs data
abstraction

Concurrency &
Communication

Virtualization &
Redundancy

Hardware
Engineer

Embedded software systems have become
a major safety and cyber security risk

Why do system level failures still
occur despite best safety practices?

Need Semantics To
Address these Challenges

13
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Hazard Analysis
FMEA
FTA
MTBF

SAFETY &
RELIABILITY

Analysis of System Properties via Architecture Model
A Contribution to Single Source of Truth

Change of Encryption from
128 bit to 256 bit

Higher CPU
Demand

Increased
Latency

Affects Temporal
Correctness

Potential New
Hazard

SAE AS5506 AADL

One change drives multiple
system issues

Single Source of Truth
Across Analysis
Models

CYBER
SECURITY

Availability
Integrity
Confidentiality

14
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

Model Based Engineering at the SEI
Model-Based Engineering for Software-intensive systems using AADL
• Challenges of embedded systems – AADL to the rescue Why AADL?
• Model-Based System Engineering, AADL
• AADL Language Overview
• AADL Tooling

15
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Model-Based System/Software Engineering
Overarching objectives
MBSE complements typical software programming with models to

1. Organize stakeholders needs and elicit requirements

2. Capture system elements – design, reverse engineering or COTS
• Interfaces, components internals (static and behavioral), and
• a system architecture built from those: deployment, (re-)configuration

3. Apply analytical frameworks to assess model’s “compliance to some objectives”
• Syntactic, conformance to guidelines, patterns
• Quality of system, w.r.t. performance, safety, security, behavior metrics

4. Synthesize portions of software from models
• E.g. functional: Simulink, SCADE; Architectural: UML, AADL
• No synthesis or link to code in SysML, as SysML has only high-level concepts

Models as processable artifacts to guide the software engineering process
“Modeling is the new programming”

Provide more insights than code-only solution through relevant abstractions and automation

Concepts

Code

16
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

MBSE – Not just SysML

Model-based systems engineering (MBSE) is the “formalized application of modeling to
support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and
later life cycle phases.” (INCOSE 2007)

SysML support capturing relationships among system functions, requirements,
developers, and users. But not the later development stages

Other modeling notations are required to
Capture hardware platforms, software architecture, behavioral semantics,
deployment of SW to HW, support safety or security assessment, performance
analysis, behavioral verification, memory budget validation, etc...

17
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Architecture Analysis & Design Language (AADL) Standard
Targets Embedded Software Systems

AADL captures mission and safety critical embedded software system architectures in
virtually integrated analyzable models to discover system level problems early and

construct implementations from verified models

In 2008 Aerospace industry initiative
chose AADL over SysML and other
notations as it specifically
addresses embedded software
systems

AS 5506 Standard Suite
Standards provide

long-term industry-wide
solutions to support
multi-organization

model-based engineering

http://www.sae.org/

18
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Not just SysML vs AADL, larger aggregation of standards

Co
m

pu
te

r Ha
rd

w
ar

e

CONOPS

Mission System
Requirements

Em
be

dd
ed

So

ft
w

ar
e

Sy
st

em

Embedded Software System

Ph
ys

ic
al

Sy

st
em

Thermodynamics
Fluid Dynamics

Electrical
Controls &

Signals

Structures

Behavior

System Concepts
& Functions

Tasking &
communication

Hardware
platform

Circuit logic

OO SW design

Source code

Circuit board

Subsystem Architecture Component Design &
Implementation

System Integration &
Qualification

System Integration
& Assembly

System Integration
& AssemblyManufacture

Manufacture

Integration &
Field Testing

AADL

Filling the Modeling and Analysis Gap for Embedded Software System

AADL

Virtual System
Integration

Model-driven

Schematic Capture

19
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

Model Based Engineering at the SEI
Model-Based Engineering for Software-intensive systems using AADL
• Challenges of embedded systems – AADL to the rescue Why AADL?
• Model-Based System Engineering, AADL
• AADL Language Overview
• AADL Tooling

20
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Core AADL language standard [V1 2004, V2 2012, V2.2 2017]
• Focused on embedded software system modeling, analysis, and generation
• Strongly typed language with well-defined semantics for execution of threads, processes on

partitions and processor, sampled/queued communication, modes, end to end flows
• Textual and graphical notation, XML/XMI interface to ease processing by 3rd party tool
• V3 in progress: interface composition, system configuration, binding, type system unification
• http://aadl.info
Ongoing work to align AADL and SysML in a common workflow -> SEI, Adventium Labs, ANSYS

AADL Standard Suite (AS-5506 series)

Standardized AADL Annex Extensions
• Error Model language for safety, reliability, security analysis [2006, 2015]
• ARINC653 extension for partitioned architectures [2011, 2015]
• Behavior Specification Language for modes and interaction behavior [2011, 2017]
• Data Modeling extension for interfacing with data models (UML, ASN.1, …) [2011]
• AADL Runtime System & Code Generation [2006, 2015]
• FACE Annex [2019]

AADL Annexes in Progress
• Network Specification Annex
• Cyber Security Annex

Roadmap
• Requirements Definition and Assurance Annex

http://aadl.info/
http://www.sae.org/

21
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

What are AADL Components?
Application Components
System – hierarchical organization of
components
Process – protected address space

Thread – a schedulable unit of concurrent
execution
Thread group – logical organization of
threads
Data – potentially sharable data
Subprogram – callable unit of sequential
code

Execution Platform & Device Components
Processor / Virtual Processor – Provides
thread scheduling and execution services

Memory – provides storage for data and
source code
Bus / Virtual Bus – provides physical/logical
connectivity between execution platform
components
Device – interface to external environment

Process

Thread

Data

Subprogram

Thread group

System

Processor Virtual
Processor

Memory

Bus Virtual Bus

Device

22
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

What does AADL actually look like?

Semi-formal semantics

Only architectural elements

Annexes add functionality:
• Error Modeling
• Behavior
• Code Generation

23
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

system CarSystem
end CarSystem;

data MyBrakeData
end MyBrakeData;

device BrakePedal
features
samples: out data port MyBrakeData;

end BrakePedal;

system BrakingSystem
features
brake_data: in data port MyBrakeData;

end BrakingSystem;

system implementation CarSystem.impl
subcomponents
braking: system BrakingSystem;
brake_pedal: device BrakePedal;

connections
c1: port brake_pedal.samples -> braking.brake_data;

end CarSystem.impl;

Textual and Graphical Representation Example

CarSystem.impl

braking
BrakingSystem

brake_pedal
BrakePedal

samples

brake_data
c1

What system-level requirements to we want to verify?
• Signal/data latency
• Data interface consistency
• Data flow/dependency
• Security-Data Confidentality

• Tread scheduling
• Thread binding/CPU loading
• Memory usage
• Hazards & error flow

24
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

An Example Model (graphical)

This AADL model
represents threads
executing within
processes (dedicated
address spaces), the
communications and
connections among the
components, and the
binding of threads and
processes to computer
resources (e.g., threads
to the processor on which
they execute).

20 ms
dataout

thr
dataout

Producer_prs

20 ms
datain

thr
datain

Producer_consumer_example_1_instance

Producer_ram Consumer_ram

Producer_cpu Consumer_cpu

eth

eth eth

Threads

Memory

Communications
Interfaces

Process

Bus

Process

25
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL: Modeling in the small

AADL modeling components: precise execution semantics
• Software: thread (group), process, data, subprogram

(group),
• Hardware: processor, memory, bus, device, virtual

processor, virtual bus
• Composite: system, abstract

Supports system concepts of continuous control & event
response processing

• Data and event flows, call/return, shared access
• End-to-End flow specifications

(from AADLv2 standard)

26
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL: Modeling in the large

Operational modes & fault tolerant configurations
• Modes & mode transition

Modeling of large-scale systems
• Component variants (refine) layered system modeling, packages, abstract, prototype,

parameterized templates, arrays of components, connection patterns

Accommodation of diverse analysis needs
• Extension mechanism (extends), , standardized extensions

27
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

Model Based Engineering at the SEI
Model-Based Engineering for Software-intensive systems using AADL
• Challenges of embedded systems – AADL to the rescue Why AADL?
• Model-Based System Engineering, AADL
• AADL Language Overview
• AADL Tooling

28
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL capabilities

AADL is highly tunable, with a restricted set of concepts
• Demonstrated many use cases, 1600+ academic publications

AADL as a backbone, federating multiple activities
• analysis through generation of intermediate models + external tools

Non exhaustive list of analysis capabilities

AADL demonstrated its suitability to support various analysis for the real world

• Performance evaluation: real-time and network calculus
• Fault analysis: COMPASS, Stochastic Petri Nets, PRISM
• Simulation: ADeS, Marzhin
• Energy consumption of SoC: OpenPeople project
• Code generation: SystemC, C, Ada, RTSJ, Lustre
• WCET analysis: mapping to Bound-T

• Integration to a process: with SysML, Simulink, SCADE
• Architectural pattern checks:

MILS, ARINC, Ravenscar, Synchronous
• Model checking:

• Timed/Stochastic/Colored Petri Nets
• Timed automata et al.: UPPAAL, Versa, TASM

• Scheduling: MAST, Cheddar, CARTS

29
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL commercial toolchains

Multiple AADL toolchains exist, they can be easily combined thanks to the textual syntax.
Examples:
• OSATE (SEI/CMU) https://osate.org/

• Eclipse-based tools. Reference implementation
• Textual and graphical editors + various plug-ins for latency, processor utilization, memory

utilization, data consistency, security, safety analysis (MIL STD 882E, ARP4761), ARINC653
• CAMET (Adventium Lab) https://www.adventiumlabs.com/curated-access-model-based-

engineering-tools-camet-library
• Extensions to OSATE to support other analysis (Multiple Independent Levels of Security

(MILS), Framework for Analysis of Schedulability, Timing and Resources (FASTAR)
• SCADE Architect (ANSYS Esterel) https://www.ansys.com/products/embedded-

software/ansys-scade-suite
• Eclipse-based tools. Combine SysML, AADL and other formalisms, code generation

• AADL Inspector (Ellidiss) https://www.ellidiss.com/products/aadl-inspector/
• Lightweight editor, model simulation, scheduling analysis

https://osate.org/
https://www.adventiumlabs.com/curated-access-model-based-engineering-tools-camet-library
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ellidiss.com/products/aadl-inspector/

30
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Wrap-Up
Model-based systems engineering (MBSE) is the “formalized application of modeling to
support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and
later life cycle phases.” (INCOSE 2007)
SysML support capturing relationships among system functions, requirements,
developers, and users. But not the later development stages of Systems Engineering
Prediction of runtime characteristics at different fidelity
Analyzable models to drive development
AADL captures at a high-level: hardware platforms, software architecture, behavioral
semantics, deployment of SW to HW
AADL supports safety or security assessment, performance analysis, behavioral
verification, memory budget validation, etc...
As a Standard, common modeling notation across organizations

31
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

Introduction to SEI
Model-Based for Software-intensive systems using AADL
AADL in practice

32
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Ideal Systems Engineering Process from models to code

Let’s assume we plan at implementing our own UAV control
logic, using the Crazyflie as an example

Steps
• One high-level requirement: piloting the UAV
• Modeling the functional chain
• Refining it down to a logical and physical chain

And then performing verification, validation and simulation
Using AADL as backbone for all models

AADL

C code

https://iconscout.com/icon/c-programming

33
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL in practice: Bitcraze Crazyflie

Lightweight UAV by Bitcraze
• https://www.bitcraze.io/crazyflie-2/

Hardware:
• 2 x MCU : Cortex-M4 + nRF51822
• IMU: MPU-9250 + Pressure Sensor LPS25H
• Bluetooth Low Energy radiocommunication

Software:
• Regular control/command loop
• Manually implemented, in C + FreeRTOS

https://www.bitcraze.io/crazyflie-2/

34
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Crazyflie architectures

From https://wiki.bitcraze.io/projects:crazyflie2:architecture:index

From https://wiki.bitcraze.io/doc:crazyflie:dev:fimware:sensor_to_control

https://wiki.bitcraze.io/projects:crazyflie2:architecture:index
https://wiki.bitcraze.io/doc:crazyflie:dev:fimware:sensor_to_control

35
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Ideal Systems Engineering Process from models to code

Define a model-based process that

Architecture

Requirements,
Design, ..

Detailed design

Middleware

Application Code

<<
co

nf
ig

ur
es

>>

<<implements>>

<<refines>>

<<allocates>>

36
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Ideal Systems Engineering Process from models to code

Define a model-based process that
• Separates concerns

- Runtime architecture ::= configured middleware
- Functional architecture ::= components

Requirements,
Design, ..

Detailed
design

Middleware

Application Code

<<
co

nf
ig

ur
es

>>

<<implements>>

<<refines>>

<<allocates>>

Func.
Arch.

Runtime
Arch.

37
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Ideal Systems Engineering Process from models to code

Define a model-based process that
• Separates concerns

- Runtime architecture ::= configured middleware
- Functional architecture ::= components

• Mitigates impact of functional code
- Using safe functional design approach
- Visible interface and metrics, bounded risks

Requirements,
Design, ..

Detailed design

Middleware

Application Code

<<
co

nf
ig

ur
es

>>

<<implements>>

<<refines>>

<<allocates>>

Func. Arch.
Runtime

Arch.

38
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Ideal Systems Engineering Process from models to code

Define a model-based process that
• Separates concerns

- Runtime architecture ::= configured middleware
- Functional architecture ::= components

• Mitigates impact of functional code
- Using safe functional design approach
- Visible interface and metrics, bounded risks

• Leverages architectural models to
- Generate middleware from architecture

Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.Runtime Arch.

39
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Ideal Systems Engineering Process from models to code

Define a model-based process that
• Separates concerns

- Runtime architecture ::= configured middleware
- Functional architecture ::= components

• Mitigates impact of functional code
- Using safe functional design approach
- Visible interface and metrics, bounded risks

• Leverages architectural models to
- Generate middleware from architecture
- Enable formal methods

• Both at model-level and implementation-level

Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.Runtime Arch.

<<verifes>>

<<verifes>>

40
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Ideal Systems Engineering Process from models to code

Define a model-based process that
• Separates concerns

- Runtime architecture ::= configured middleware
- Functional architecture ::= components

• Mitigates impact of functional code
- Using safe functional design approach
- Visible interface and metrics, bounded risks

• Leverages architectural models to
- Generate middleware from architecture
- Enable formal methods

• Both at model-level and implementation-level
• Connects to Model-Based Systems Engineering

Certification as long term objective

Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.Runtime Arch.

<<verifes>>

<<verifes>>

41
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Using AADL – Outline

1. Modeling Architectures Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.Runtime Arch.

<<verifes>>

<<verifes>>

Runtime Arch.

42
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL Functional chain library

Build a package with all functions as abstract components

43
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL functional chain implementation

Function as abstract
component

Abstract data

44
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Crazyflie Hardware

Same strategy: library of components + system implementation

CPUDevices Bus components

45
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Crazyflie Complete System

Software Processes Hardware/Software Binding

46
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Functional / Physical bindings (allocation)

Fu
nc

tio
na

l
Ph

ys
ic

al

Model gateway

C code
Code generation

Analysis

https://iconscout.com/icon/c-programming

47
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Using AADL – Outline

1. Modeling Architectures
2. Architectural pattern enforcement

Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.

<<verifes>>

<<verifes>>

AADL

: AADL

48
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Architectural pattern enforcement

AADL is an Architecture Design Language
• What about an Analysis Design Language ?

Use cases: define project-specific analysis
• Enforcing architectural constraints

- E.g. Ravenscar, security, ARINC653, OS configuration, etc.
• Evaluating contracts, e.g. compatibility of configuration

- E.g. controller implementation must be triggered at the right period

Use of Resolute, by Collins, inherit from REAL: Requirement Enforcement and Analysis
Language by Olivier Gilles PhD thesis

• A DSL to check static invariants: patterns, contracts, requirements
• Project-specific analysis, mining architecture models

49
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Architectural constraints – Example

Ravenscar profile for mono-core systems correctly applied
system ravenscar_sys
annex resolute {**
prove ravenscar_rule_component(this) -- Implementation must match Ravenscar constraints
**};
end ravenscar_sys;

is_Scheduling_Configured(c: component) <=
** "Thread " c " is correctly configured" **
has_property(c, Timing_Properties::Compute_Execution_Time) and -- Capacity
has_property(c, Timing_Properties::Period) and -- Period
has_property(c, Timing_Properties::Deadline) and -- Deadline
has_property(c, Thread_Properties::Priority) -- Priority

50
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Using AADL – Outline

1. Modeling Architectures : AADL
2. Architectural pattern enforcement : Resolute
3. Code generation and middleware

Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.

<<verifes>>

<<verifes>>

AADL + Resolute

Middleware

51
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Code generation and middleware
Architecture-centric process

AADL captures tasks, queues, buffers, protocols
⇒ Generate middleware stack on top of minimal runtime/real-time OS

Generated code

PolyORB-HI runtimes

Container

Middleware
code: req.

dispatching

User code: C,
SDL, SCADE…

OS AL

Drivers/Protocols

52
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Code generation and middleware: Ocarina
http://www.openaadl.org

Contributions are supported by tools

1. Ocarina: AADL model “compiler”, FLOSS
• Compiler architecture, AADL front-ends, code generation backends

2. PolyORB-HI runtimes
• Ada High-Integrity profiles, with Ada native and bare board runtimes
• C POSIX or RTEMS, for RTOS & Embedded,
• Time and Space partitioning, e.g. ARINC653 C APEX, AIR, Xtratum

Generated code quality tested in various contexts
• WCET, quality, code coverage, etc.
• Meet High-Integrity coding profiles

- Ravenscar model of computations, static configuration of all elements (memory, buffers, tasks, drivers, etc.), no
dynamicity

http://www.openaadl.org/

53
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Using AADL – Outline

1. Modeling Architectures : AADL
2. Architectural pattern enforcement: Resolute
3. Code generation and middleware:

Ocarina and PolyORB-HI
4. V&V strategy

a) Code level
b) Model-level

Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.

<<verifes>>

<<verifes>>

AADL + Resolute

MiddlewarePolyORB-HI

54
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

V&V Strategy – Code-level

Use SPARK2014 Ada extensions to annotate runtime
• High-Integrity profile, Ravenscar Model of Computation
• Type invariants, data flows, pre/post conditions

55
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

V&V Strategy – Model-level

Requirement to assess model-level properties
• Prior to code generation, ensures model is “safe”
• Exploitation of AADL static and behavioral semantics

Careful definition of V&V strategy: “right property/right tool”
• Deadlock freedom: intrinsic property of Ravenscar
• Configuration: static property with RESOLUTE (model), SPARK (code)
• End-to-end latency ?
• Scheduling analysis?
• Safety Analysis?

56
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Flow latency analysis – OSATE

57
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Scheduling Analysis – AADLInspector / Cheddar

58
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

FHA and FMEA – OSATE

Error Source origin
• Used in FHA as “Error”
• propagated type -> hazard

59
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Fault-Tree Analysis Support – OSATE

Use of composite error behavior
• FTA nodes

Use of component error behavior
• Incoming error events + combination

Walk through the components hierarchy
• Generate the complete fault-tree
• Focus on specific AADL subcomponents

component error behavior
transitions

t1 : Operational -[DOFs{ValueErroneous} or
processor{Lost}

]-> Failed;
propagations
Failed -[]-> Rate_1{ValueErroneous};

end component;

60
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Using AADL – Conclusion

1. Modeling Architectures : AADL
2. Architectural pattern enforcement: Resolute
3. Code generation and middleware

Ocarina and PolyORB-HI
4. V&V strategy

a) Code level: SPARK2014
b) Model-level: OSATE ecosystem
c) Model checking (not shown)

5. Systems Engineering: SysML and Capella (see Adventium Labs talk)

Requirements,
Design, ..

Middleware

<<
ge

ne
ra

te
s>

>

Detailed design

Application Code
<<implements>>

<<refines>>

<<allocates>>

Func. Arch.

<<verifes>>

<<verifes>>

AADL + Resolute

MiddlewarePolyORB-HI

Requirements,
Design, ..

61
An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
© 2021 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Conclusion

Just an overview of AADL capabilities.
To learn more or collaborate, contact us at info@sei.cmu.edu.

More resources

SEI AADL Library (all papers, technical reports, etc.):
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=453645

SEI AADL resources:
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439

mailto:info@sei.cmu.edu
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=453645
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439

	An Overview of AADL and Toolsets to Support the Engineering of Safety-critical Systems
	Slide Number 2
	Outline
	Outline
	Making Critical Systems Safer and More Secure
	Model-Based Engineering for Cyber-Physical Systems
	Before You Even Write a Line of Code…
	Outline
	We Rely on Software for Safe System Operation
	The Safety-Critical Embedded Software System Challenge
	High Fault Leakage Drives Major Increase in Rework Cost
	Technical Challenges in Safety-Critical Embedded Software Systems
	Analysis of System Properties via Architecture Model�A Contribution to Single Source of Truth�
	Outline
	Model-Based System/Software Engineering �Overarching objectives
	MBSE – Not just SysML
	Architecture Analysis & Design Language (AADL) Standard �Targets Embedded Software Systems
	Not just SysML vs AADL, larger aggregation of standards
	Outline
	 AADL Standard Suite (AS-5506 series)�
	What are AADL Components?
	What does AADL actually look like?
	Textual and Graphical Representation Example
	An Example Model (graphical)
	AADL: Modeling in the small
	AADL: Modeling in the large
	Outline
	AADL capabilities
	AADL commercial toolchains
	Wrap-Up
	Outline
	Ideal Systems Engineering Process from models to code
	AADL in practice: Bitcraze Crazyflie
	Crazyflie architectures
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Ideal Systems Engineering Process from models to code
	Using AADL – Outline
	AADL Functional chain library
	AADL functional chain implementation
	Crazyflie Hardware
	Crazyflie Complete System		
	Functional / Physical bindings (allocation)
	Using AADL – Outline
	Architectural pattern enforcement �
	Architectural constraints – Example
	Using AADL – Outline
	Code generation and middleware�Architecture-centric process
	Code generation and middleware: Ocarina�http://www.openaadl.org
	Using AADL – Outline
	V&V Strategy – Code-level
	V&V Strategy – Model-level
	Flow latency analysis – OSATE
	Scheduling Analysis – AADLInspector / Cheddar
	FHA and FMEA – OSATE �
	Fault-Tree Analysis Support – OSATE
	Using AADL – Conclusion
	Conclusion

