CYBER ASSURED
SYSTEMS ENGINEERING
WITH AADL

sl [ACVIP USER DAYS
4 FEBRUARY 2021 ‘

DARRENICOFER
FEL LGSR ST EDSY SEiEMS
DARREN.COFER@CEIE | NSOEEC |V

A\ :
% Collins Aerospace

Approved for public release. Distribution is unlimited.

TEAM

COLLINS-LED DARPA CYBER ASSURED SYSTEMS ENGINEERING (CASE) PROJECT

Collins Aerospace
* Architectural transformations for cyber-resilience
« Component synthesis and proofs
« Formal analysis and assurance case
* Tool integration
Data 61
» sel4 formally verified secure microkernel for memory protection
* Formally verified components (selL4, CakeML language)
University of Kansas
* Formally verified attestation for distributed computing platforms
Adventium
* Real-time scheduling
* AADL modeling and code generation
Kansas State University
* Automatic code generation from architecture models with proof of equivalence
* Information flow analysis

A .
%,\é Collins Aerospace

A

Collins Aerospace
7 P

DATA I @

Adventium'

LABS

KANSAS STATE
UNIVERSITY

Approved for public release. Distribution is unlimited

2

BRIEFCASE TOOL CAPABILITIES Model-Based

PR | Cngineering
: : P | with AADL
- Integrated model-based systems engineering tool -
suite based on Architecture Analysis & Design Language
(AADL) models o
« Transform system design to satisfy cyber-resiliency |
reqUirementS : -Ir—u;r_ef;dia?iu;red; . Peter H. Feiler

David P. Gluch

» Generate new high-assurance components from
formal specifications

* Verify system design using formal methods and o
document evidence/compliance with assurance case

» Generate software integration code directly from et 1f
verified architecture models, targeting multiple operating
systems (including selL4) —m—y

Why AADL?

« Sufficiently rigorous semantics to support analysis
» Correct level of abstraction (supports construction)
o« OSATE supports addition of new capabilities

%\x/é Collins Aerospace

e ——
Approved for public release. Distribution is unlimited.3 oz

3 TECHNOLOGY PILLARS

1.

Developer assistance to implement cyber-resiliency
* Automated architecture transforms for threat mitigation

* High assurance components generated from specifications M B S EC
. ' i ' Ti d
Technlque.s to deal with IegaC}/ code (cyber retrofit) rGAI;S({Z;Ze Model-Based Systems Architecture
MBSE environment for high-assurance cyber- @I Enoineering for Cybersecurity Model
resilient system development Capabilities

» Build system directly from detailed, verified AADL model
* Makes the security guarantees of seL4 accessible to system

developers CY- R E S

« Ability to target different platforms to facilitate incremental : _
Architectural Transformations

debugging/development o
. e L. for Cyber-Resiliency
Integration of formal verification/proof
« Formal verification of functional and cyber-resiliency properties, Component .
information flow properties, component proofs pecs Formal Verification

S
« Code generation equivalence to model, seL4 build preserves \/7
properties

» Integrate evidence as an assurance case demonstrating how/why Verified Components
requirements are satisfied

Assurance
Case

PROOF

End-to-End Integrated

N .
~
% COI I ins Aerospace Approved for public release. Distribution is unlimited.4

BRIEFCASE TOOL ARCHITECTURE

A .
%ﬂé Collins Aerospace

e Svst P N ™
ystem OSATE
MOdellng e AADL model
Environment i
! N
i | HAMR plugin Cyber Reqts Cyber AGREE]7 Solvers
il - plugins Transform
! ! 1 plugin) Resolute]
: ! N\ / J
\. : ! A\ / J
4 N v/ A N\
i System 1 | Component SPLAT] Component
E Build 1 |implementation J implementation
! evidence ! and glue and glue
o ! *.c files CakeML files
CAmMKES input model
High-Assurance]
Code Generation (" compiler CAMKES CakeML
Tools compiler
_ J
UAV exe UAV exe
Linux selL4 || capDL

Approved for public release. Distribution is unhmited.6

ARCHITECTURAL TRANSFORMATIONS FOR
CYBER-RESILIENCY

AADL model

il

i | HAMR plugin Cyber Reqts Cyber Solvers
i - plugins . Transform
! ! plugin Resolute
: ! N\
! r | A\ /
e N v
i System 1 | Component Component
E Build 1 |implementation implementation
! evidence ! and glue and glue
o ! *.c files CakeML files
CAMKES input model
\
C compiler CAmMKES CakeML
compiler
| |
V2 V2
UAV exe UAV exe
Linux seL4 || capDL

N .
~
% CO"'ns Aerospace Approved for public release. Distribution is unlimited.?

1. GENERATE / IMPORT CYBER REQUIREMENTS

uuuuuu

* Choose one of the Cyber
Requirements generation tools

* CRA GearCASE plugin
* Vanderbilt/DOLL DCRYPPS plugin

* Initial model data is exported to
selected tool

* Requirements import wizard

manages the generated DCRYPPS
requirements :
» Select action | L
« Naming/tagging ‘
- Associate with formal properties e e i e et 70
: : : Candidate e s - T e P e T
* Requirements inserted into model Cyber : = i
as Resolute goals (GSN) Requirements M T . SO
* We will build an assurance | =
argument to satisfy these goals /4 e i o carn -

Approved for public release. Distribution is unlimiled.8

%\x/é Collins Aerospace

2. APPLY CYBER TRANSFORMATIONS

W impl*

* Cyber requirements tools provide model
context and sometimes suggested mitigation

« System engineer selects from available
cyber-resiliency transformations
* Filter
* Monitor
* Gate (controlled by monitor)
* Attestation
* Virtualization
* sel4 build prep
* Wizard interface collects needed
configuration data

* Tool automatically transforms AADL
model

* Also adds Resolute assurance case strategy
to show how the associated goal
(requirement) is satisfied

N\ .
~
% CO"'“S Aerospace Approved for public release. Distribution is unlimited.9

2A. INSERT ASSURANCE CASE STRATEGY

* Resolute links cyber transform to goal as a GSN strategy
» Checks for violations/changes that impact correctness
» Collects evidence and generates assurance case

annex Resolute {**

thread Filter
features
filter in: in event data port
filter out: out event data pe
properties
CASE: :COMP TYPE => FILTER;
CASE: :COMP_IMPL == "CakeML";
CASE: :COMP_SPEC => "(\\i{-9@,
annex agree {**
guarantee "The Flight Planner

package CASE Requirements
private

annex Resolute {**

goal Req WellFormed(comp
#% YIpermit well form
context Generated By
context Generated On
context Req Component
context Formalized
agree property checke

A .
%né Collins Aerospace

- Top-level claim for proper insertion of a filter
goal add filter(comp context : component, filter : component, conn : connection, msg type :
#* "Filter " filter " is properly added to component " comp context ##*
filter exists(filter, comp context, conn) and component not bypassed(filter, comp context, msg type) and component implemented(filter)

data) <=

- Top-level claim for proper insertion of attestation manager
goal add attestation manager(comm driver : component, attestation manager :
"Attestation Manager added for communications driver " comm _driver **
attestation manager exists(comm driver, attestation manager) and attestation manager not_ bypassed(comm driver, attestation manager, atte:

component, attestation gate : component) <=

[*! Problems [Properties [AADL Property Values @ AGREE Results B Console =g Progress B Assurance Case 2

4 |+ well_formed(FPLN : SW:FlightPlanner, "good_gs_command”)
4« FPLN : SWiFlightPlanner only receives well-formed messages
+ A filter exists on the communication pathway immediately before FPLN : SW:FlightPlanner
+ Filter cannot be bypassed
+ Filter property implemented by CakeML
+ AGREE property passed: [good_gs_command]

Approved for public release. Distribution is unlimiled.lo

3. GENERATE HIGH ASSURANCE COMPONENTS

« Some of the cyber transforms insert new
high-assurance components into the model

* The behavior of the component (its contract)
Is specified in AGREE

 SPLAT generates component
implementations from their specifications

* SPLAT also generates a proof showing that
the component implements its specification

* Other components (such as the Attestation
Manager) are pre-built pre-verified libraries

« Their implementations are essentially
library functions that are added to the build,
possibly with some configuration data from
the model

A .
%ﬂé Collins Aerospace

SW.Impl*

Proof

CakeML

Approved for public release. Distribution is unlimited.ll

USE CASE : "CYBER RETROFIT”

* How can we deal with legacy code/systems?

« Example: UXAS
« Open source, less trusted
» Not designed for cybersecurity
* Written in C++

1. Virtualize legacy system
« Support for multiple VMs, if needed

Host on selL4

Extract/harden critical components
Filter inputs

Monitor outputs

ok~ WD

%\x/é Collins Aerospace

Operating System (Linux, etc.)
Virtual Machine

Secure Microkernel (sel4)

Hardware

% T GiMBALY H
L !
3 Cammand '
B ! ey
PR PR SRSE
]
]
]
rVehicieState |
]
]
]
AstomationResponse g _ 1
¥ e |
H WP ¥ 7y H
i
Autor Resgonse data [uarnt_send
. ‘
N - - Missio V——""
i ! "1 1 recy_data | uart_coe
alart Returntiome ArVehicieState, | KrVehicieStte e
?—-—f & i
! | S [A
'
i
...................

Approved for public release. Distribution is unlimiled.l2

MODEL-BASED SYSTEMS ENGINEERING
FOR CYBERSECURITY

ATE
05 AADL model

HAMR plugin Cyber Reqts Cyber AGREE Solvers
plugins Transform
plugin

Resolute
v\

i System 1 | Component SPLAT Component

i Build E implementation implementation
E evidence ! and glue and glue
o ! *.c files N CakeML files

C compiler CakeML
compiler
\ \
UAV exe UAV exe
Linux selL4 || capDL

%\x/é Collins Aerospace

Approved for public release. Distribution is unlimiled.l4

MBSEC

MODEL-BASED SYSTEMS ENGINEERING FOR CYBERSECURITY

The model IS the system

 Itis not just a picture for communication, or a way to capture
requirements, or a means to perform analyses

It is all of those things, but it is also how we will actually
build the system, and do so in a way that ensures
compliance with the design captured in the model

Rationale for AADL

» Provides the necessary precision and semantics for building
real-time distributed embedded software systems

MBSE for seL4

* Furthermore, we are bridging the gap between systems
engineers and the formally verified seL4 microkernel

« Ensure usability by systems engineers and promote
successful transition

« HAMR
* High Assurance Modeling for Rapid Engineering
» Code generation from AADL models

A .
%ﬂé Collins Aerospace

SOFTWARE INFRASTRUCTURE

HAMR AND SEL4

 HAMR is a multi-stage translation architecture to

address CASE goals of component migration between

platforms and information flow control
¢ Semantic consistency from model to execution

* Ensures model-level analysis applies to deployed code

¢ Same computational model across different platforms

 Build for multiple target platforms:
* selL4/Linux/ Virtual Machine
 Build for workstation / emulator / embedded platform

* selL4 microkernel guarantees partitioning of components

and communication, backed by computer-checked
proofs

* sel4 guarantees no infiltration, exfiltration,
eavesdropping, interference, and provides fault
containment for untrusted code

%\x/é Collins Aerospace

TempControlProcess.i*

HAMR
code
generation

KANSAS STATE

ST patom e estuenre

8’

=
]

£

.

AADL Infrastructure Port
Communication Abs Layer

'e

Prog Language AADL Port
Comm Abs Layer
AADL Port Comm Service

Abs Layer
Communication Abs Layer

AADL Infrastructure Port

AADL Port Comm Service
Prog Language AADL Port
Comm Abs Layer

Abs Layer

| AADL Thread Entry
Points/ Dispatch Logic

seL4is...
An operating
system microkernel
A hypervisor
Proved correct

Provably secure
Fast

Security. Performance. Proof.

HAMR SUPPORTS MULTIPLE

LANGUAGE/ PLATFORM COMBINATIONS

The flexibility of being able to easily shift between different platforms was quite useful as the team
experimented with building the Phase 2 Experimental Platform assessment deliverable.

TempControlProcess.i*

[—————— Il
tempSensor* -]
“hanged témpChar fanCmd fanCmd'

I
] ¢ : I 5= i
| - -

- ' P -------
tempControl* N 1 fan*

::’ AADL / OSATE - design

“i| model, types, perform analyses

o Applicati o
ote S e
G Communication

Infrastructure Infrastructure
Auto-generated Code for Platform enerated Code for Platform x40 cenerated
Component Infrastructure Component Infrastructure 3:":“ e -
Code for Platform Code for Platform Com for Piatform astru
Auto BppEc Auto Application
N sl Coummen
C Communication
o Infrastructure Infrastructure
Auto-genera Code for Platform Code for Platform
Component Infrastructure Component Infrastructure Autorgenerated
Code for Platform mMp&nmgasUquu
Auto Spyset Auto Application
Code Run-Time Run-Time
C Communication
o Infrastructure Infrastructure
ra Code for Platform Code for Platform
Component Infrastructure Component Infrastructure Autorgenerated
for Platform Code for Platform Mp&nmwmﬁmmm

o Anplicati _ Application
ot Sl Coummen i
G Communication

<«
C
<«
<«

Infrastructure Infrastructure
Auto-generated Code for Platform enerated Code for Platform Auto rated
Component Infrastructure Eompome Tafastuchas T A e
Code for Platform Code for Platform Code for Platform

A .
%ﬂé Collins Aerospace

JVM/SIang — data types, port constraints, basic
aspects of application logic, initial unit testing — some
mocked up components, many useful visualizations

Linux C — compile Slang to C, or manually code
C, and debug C implementation, VMs mocked up

selL4 C / Qemu — C application code easily
ports to seL4 native components, add in VMs,
test/simulate/debug in Qemu

selL4 C / board - selL4 build shifted to actual
hardware for final testing and deployment

Adventium / Kansas State
Approved for public release. Distribution is unlimited.

HAMR ABSTRACTION LAYERS

OO

\ S
= > — s o
/ & 5 a&l 39 &5
! @ g = =8 $3| g5 58
I 22| EL . Application o2| E> B E
N © =) E o)) E - O S o
e 2 s<| € E © o g c S
. =5 58| 38 33|58 58
a as D¢ | A2 OE
Port 2E | Q2| SEF== -26] 8 28
ot 23 |3 Zé AADL Thread Entfy | o o <8 =8
communication L L g ; : T~
— - Points/ Dispatch ' ~ o
APIs ,7 Logic (T2) S
\
(AADL Thread Infrastructure Kb‘s/l_ayer f
/
s
~
-~ ~ o - _ - - - -

b R —
_—em mm am = -

Threading APIs I

Adventium / Kansas State

N .
~
% COI I ins Aerospace Approved for public release. Distribution is unlimited. 18

Standardized entry point for

APPLICATION LOGIC HAMR / AADL periodic threads

| (skeleton auto-generated)

r
z

unit hamr_SW_WaypointPIanManagerService_thr_lmpl_lmﬁ]_timeTriggered_(
STACK_FRAME

hamr_SW_WaypointPlanManagerService_thr_Impl_Impl this) {
bool dataReceived = false; Use of auto-
size t numBits = O; generated API for
uint8_t payload[MAX_PAYLOAD]; , | input event port
/
/
dataReceived = /

api_get ReturnHome hamr_ SW_WaypointPlanManagerService_thr_Impl_Impl(this);
1T (dataReceived) {

returnrione = true; Use of auto-generated
d APl for input event
1T (returnHome || automationResponse = NULL) { //' data port
dataReceived = ,

api_get_AirVehicleState__hamr_SW_WaypointPIanManaﬁerService_thr_lmpl_lmpl(
this, &numBits, payload);
1T (dataReceived) {

air_vehicle _state iIn_event _data receive handler(this, payload);
+

} Note: Same C APIs are used for selL4 native,
} seL4 VM (as an option), and Linux. These mirror

' the structure of Slang and CakeML APIs.
S\ //E Collins Aeroquce ROvVentium / Kansas State

Approved for public release. Distribution is unlimited. 21

RESOLINT: LINTER TOOL FOR AADL MODELS
4 N

: : Modeling Guidelines
- Define rules in Resolute that 0 e O =

forall (t : thread) .

correspond to modeling guidelines dispaten_protocol_specified | propary spectian = Link_check(t, hes_proparty(t, Dispatch Protocol))

valid_dispatch_protocol() <=
** "Threads can only specify a dispatch_protocol property of periodic or sporadic™ ==
forall (t : thread) . lint_check(t, has_property(t, Dispatch_Protocol) =>
{property(t, Dispatch_Protocol) = "Sporadic" or property(t, Dispatch_Protocol) = "Periodic"))

e Threads can only specify a dispatch_protocol o
valid_dispatch_protocol property of periodic or sporadic

* Group rules into rulesets _ " ‘ ’
corresponding to organizational Y
process, customer requirements, package systen Build
certification guidelines, and tool
constraints ‘ “{{

info (print("Linting HAMR ruleset"))

10 error (one_process())

® Automatlca”y CheCk Compliance With 12 warning (dispatch_protocol_specified())

13 error (valid_dispatch_protocol())

modeling guidelines in OSATE 4 |
15 error (bounded_integers())

16 error (bounded_floats())

1

18 warning (data_type_specified())

19 warning (subcomponent_type_specified())
20

21 error (array_dimension())

error (one_dimensional_arrays())

& Problems #1 | [C] Properties [Console
2 errors, 54 warnings, 1 other
Description

v @ Errors (2 items)
@ Components bound to a virtual processor may only communicate with components bound to other processors via event data ports
@ Only one processor-bound process can contain thread or thread-group subcomponents

QL .
~ : -
% COIIIns Aerospace * Warnings (54 tems) Approved for public release. Distribution is unlimited

END-TO-END INTEGRATED FORMAL VERIFICATION 3. PROOF

e A\
OSATE
________ AADL model
E) 4)
M HAMR plugin Cyber Reqts Cyber <— Solvers
i - plugins Transform
: ! / J
! ! N\ /
i System 1 | Component Component
E Build 1 |implementation implementation
! evidence ! and glue and glue
o ! *.c files CakeML files

CAmMKES input model

C compiler CakeML
compiler
|
\Z \2
UAV exe UAV exe
Linux selL4 || capDL

QL .
~
w COIIIns Aerospace Approved for public release. Distribution is unlimited.23

END-TO-END INTEGRATED FORMAL VERIFICATION

system properties

assurance
case

architecture properties

high-assurance components legacy components

HAMR correspondence proof
CAmMKES translation proof
selL4 initializer proof

selL4 proof

N .
~
% CO"'ns Aerospace Approved for public release. Distribution is unlimited.24

@' seL4 integrity
policy (access
gontrol) is

A .
%,\é Collins Aerospace

BRIDGING THE GAP
WITH PROOFS

e (3) CAmKES
may 2 e translates system

, initializer constructs description into
system whose capDL spec
capabilities and

objects conform to
capDL specification

HAMR translates
AADL model into
CAmMKES system
description

Approved for public release.

Distribution is unlimited.25

HAMR CORRESPONDENCE PROOF CONCEPT @

— Port
HAMR generates a |I e
topological structure [»
polog i | = Component Connection ¢
using Alloy relations | = -
AADL Model : E\: i GHAMR FlowPreservation (formal spec in Alloy): For
I 3 enerates every connection between two components in
I ST < | Tr?ceabll}ty AADL, there is a flow path in the source code
. S " $§ Information between code artifacts associated with the ports.
Flow-path in code corresponding ~ I §§
to realization of communication 1 § |
for connection SRS)
I I NoNewFlows (formal spec in Alloy): For every
4 Port A 4 f flow path between two components in the source
HAMR generates a Application code, there is a connection in the AADL model
topological structure E - code for Connection between corresponding ports.

component

using Alloy relations

Executable Code and Observation point Observation point

Configuration Information

in code associated in code associated
with port input with port output

Kansas State
Approved for public release. Distribution is unhmited.z6

A .
%ﬂé Collins Aerospace

PHASE 2 UAV DEMONSTRATION

AFRL UXAS AUTONOMOUS MISSION PLANNER

« Ground Station sends automation requests to UAV

* UAV Mission Computer processes requests and
generates flight plans

* UAV Flight Control Computer computes guidance
commands to follow current segment of flight plan

* CASE evaluation team developed cyber
attacks on baseline platform

» Collins team hardened platform using
BriefCASE tools

« Evaluation team attacks ineffective against
hardened platform

A .
%ﬂé Collins Aerospace

(UAS.Impl

[MCMP* h (FCTL®

radio_send radio_recv radio_recv.

fc_uart_send uart_recv

radio_recv radio_send radio_send

MARTIN
SUPER-BAT

ODROID-XU4
MISSION
COMPUTER _

. PICCOLO

GROUND STATION

Approved for public release. Distribution is unlimited 27

ATTACKS / MITIGATION

Trojans added to UxAS PlanBuilderService
Replaces AutomationResponse with plan that
violates KeepOutZone

UAV MISSION COMPUTER

SW.m pl*

Impisman:

AutomationReques

Line SearchTask Line SearchTazk_ir

OperatingRe gion -Operatingﬂegion_ir

TrustediDs TrustediDs

Radio Atte stationGate:

AutomationRequest_in .
" AutomationRequest_ou

OperatingRegion_out

e EW
UxcA 5*

AutomationReques

AutomationRe spons: AutomationResponse_i

AirVehicle State
I

OperatingRegior

1

Line SearchTask_ou Line SearchTask

|f ResponseMonitor
AutomationRequest_il

AirVehicle State
L

+
Mis sionComman

WaypointManager:

l*j I“‘

| L STFilter* |
Line SearchTask_ir Line SearchTask_ou

AirVehicle State

MizsionCommam

I GeofenceMeoniter ’
AutomationResponse_il Ll JReturnHorne
S —
- T T
AutomationResponse_ou AutomationRespons:

Malformed ground
station messages

GND STN

station
malicious

Code added to ground
software to generate
requests

\ J

®

A .
%ﬂé Collins Aerospace

All UAV software runs on formally verified selL4 secure kernel
UXAS software isolated in Linux virtual machine (cyber retrofit)
Specific attacks from evaluation team mitigated:

1. Malformed messages blocked by high-assurance filter

2. High-assurance geofence monitor detects plan that violates KeepOutZone
and sends alert to WaypointManager to trigger return to base

Response monitor detects crashed UxAS planner and alerts operator

3. Remote attestation measures ground station software and detects
modified code

© 2020 Collins Aerospace
Approved for public release. Distribution is unlimited.

CASE PHASE 2 DEMO VIDEOS

HTTP://LOONWERKS.COM/PROJECTS/CASE

d ' BriefCASE demg@ ; [L] -
Waich later Share

BriefCASE

An Integrated development environment for
building cyber-resilient embedded systems

Model embedded system architectures
Cyber-vulnerability analysis

Automated cyber-resiliency mitigations
High-assurance component synthesis
Formal verification of system properties
Automated build for a secure kernel target
platfarm

* Generation of a system cyber-security assurance ’

case

. et

. c -
DATA U . \ Adventiumy Kansas STATE = R thon Auess
& SEELL R = 3 r < ite o

%:' Collins Aerospace

ﬁ Il S o el

This video provides a demonstration of the BriefCASE tool environment, In part two, we run the hardened UAV mission computing system built in
showing how to use the tools to address multiple cyber-resiliency the first video and test it against several cyber attacks to show the
requirements for a UAV mission computing system (22:35). effectiveness of the approach (10:13).

\1// . .
%'é CO"I“S Aerospace © 2020 Collins Aerospace 29

Approved for public release. Distribution is unlimited.

https://youtu.be/sOVs959q_lI
https://youtu.be/Ue0HHdL52-w

CASE PHASE 3 DEMONSTRATION

BASELINE SYSTEM (PHYSICAL)

* Collins Common Avionics Architecture System (CAAS)
» Goal : Extend (securely) to add wireless connectivity
» |dea : Repurpose one of the mission processing modules (VPM) to act as guard using BriefCASE AADL tools

/

VDTU TAC-SVS
ADSB VPM MC1 PSM1
N N N N
Soldier Pilot
Tablet2 Tabletl
N\ N
\ 4
| Wireless | | Switch .
I Router | ° D'g'rfaF',;",\;'iCh

N\ .
% COI Ilns Aerospace Approved for public release. Distribution is unlimited. 30

CASE PHASE 3 DEMONSTRATION

HARDENED SYSTEM » Filter messages to/from tablets
« Attestation of tablet(s)

e sel4 hosting Android « Monitor ADSB traffic for spoofing
« Attestation « Virtualization for legacy functions
VDTU TAC-SVS

ADSB VEM MC1 PSML1

Soldier
Tablet2

Pilot
Tabletl

N

\ 4

A .
%ﬂé Collins Aerospace

Vv V \ 4
Wireless D,S.V\f'tch i
igital switc
Router on PSML

N

Approved for public release. Distribution is unhmitcd.sl

CONCLUSION

CY-RES

Architectural Transformations
for Cyber-Resiliency

* Developer assistance to implement cyber-resiliency
* Automated architecture transforms for threat mitigation
* High assurance components generated from specifications
* Techniques to deal with legacy code (cyber retrofit)

« MBSE environment for high-assurance cyber-resilient
system development
* Build system directly from detailed, verified AADL model M B SEC
* Makes the security guarantees of seL4 accessible to system developers Model-Based Systems

» Ability to target different platforms to facilitate incremental Engineering for Cybersecurity
debugging/development

* Integration of formal verification/proof

* Formal verification of functional and cyber-resiliency properties, information
flow properties, component proofs

* Code generation equivalence to model, seL4 build preserves properties P ROOF
* Integrate evidence as an assurance case demonstrating how/why End-to-End Integrated
requirements are satisfied Formal Verification

Open-source tools : GitHub.com/Loonwerks/formal-methods-workbench
Demo video : Loonwerk.com/projects/case.html

QL .
%& COIII“S Aerospace Approved for public release. Distribution is unlimited. 32

	Cyber Assured Systems Engineering with AADL
	Team
	BriefCASE Tool Capabilities
	3 Technology Pillars
	Briefcase tool architecture
	Architectural Transformations for �cyber-resiliency
	1. Generate / Import Cyber requirements
	2. Apply Cyber transformations
	2A. Insert assurance case strategy
	3. Generate High Assurance components
	Use Case : “Cyber retrofit”
	Model-Based Systems Engineering �for Cybersecurity
	MBSEC
	Software Infrastructure
	HAMR supports Multiple�Language/ Platform Combinations
	HAMR Abstraction Layers
	Application Logic
	Resolint: linter tool for AADL models
	End-to-End Integrated Formal Verification
	End-to-End Integrated Formal Verification
	Bridging the gap�With Proofs
	HAMR correspondence proof concept
	Phase 2 UAV Demonstration
	Attacks / mitigation
	Case Phase 2 Demo videos
	CASE phase 3 demonstration
	CASE phase 3 Demonstration
	Conclusion

