mercury

AVIONICS SYSTEM OF SYSTEMS SIMULATION **AND MODELING TOOL CHAIN (ASSIST)**

February 3-4, 2021 **AADL User Meeting**

Prachee Sharma, Dhruv Monga {psharma, dmonga}@poc.com

This work is performed under Army SBIR contract #'s: PHASE I: W911W6-18-C-0047, W911W6-18-C-0012 PHASE II: W911W6-19-C-0015, W911W6-19-C-0038

Distribution Statement A: Approved For Public Release; Distribution Unlimited.

PHYSICAL OPTICS CORPORATION – A MERCURY COMPANY

© Mercury Systems, Inc.

Company Background (POC only a.k.a. Mission - Torrance)

Founded

Founded in 1985, POC was a small business, employee-owned company until acquired by Mercury Systems Inc. Jan 2021

Employees

332 Employees – 27 Ph.Ds, 156 Engineers Mercury Systems Inc. 2,000+ Employees

Patents

Over 160 issued patents – 60 technologies

Revenue

Financially Strong & Profitable Revenue Projection for 2020 is \$126M

Torrance, CA 170,000 sq. ft. facilities, 6 buildings. 27,000 sq. ft expansion in 2020

Strategic Advisory Board Outside Board Members Independent Reviews

Certifications

AS9100, AS9110 Test Laboratory Accreditation CMMI V1.3

Mission – Torrance Areas of Focus

Problem Statement

High Complexity of Avionics Software

- Exponential growth in Source lines of code (SLOC)
- High complexity means
 - *High development cost and high cost of validation and verification (V&V)*
- Affordability of avionics development adversely impacted

Difficulty in Using Multicore Processors in Avionics

- Difficult due to inability to verify performance during requirements, design and implementation stages
- Analysis of hard real-time and soft real-time requirements needed
- Shared resources make V&V difficult
- Problems exacerbated in presence of high complexity software
- Sustained growth in avionics requires dramatic cost-cutting measures to curtail rising costs

Solution

- ASSIST: Avionics System of Systems Simulation and Modeling Tool Chain
- Cost reduction by
 - Detect defects created during CONOPS, Requirements and Design
 - Correct defects during avionics design

ASSIST Approach

Ex.: Defects Detected, Corrected via M&S

ASSIST Features

<u>POC</u>

Cloud to Simulate Large Avionics Systems

ASSIST is Integrated with OSATE Framework

Managing and Editing AADL Projects

Organize, Manage Simulations

View Simulation Data and Real-Time Analysis

13 © Mercury Systems, Inc.

ASSIST USING ASSIST

© Mercury Systems, Inc.

DISTRIBUTION STATEMENT A: approved for public release; distribution unlimited

MultiCore Analysis

Simulation Statistics Collected

- Data of interest for Multicore Processor Analysis
 - Federal Aviation Administration (FAA) Study Assurance of Multicore Processors in Airborne Systems <u>http://www.tc.faa.gov/its/worldpac/techrpt/tc16-51.pdf</u>

mercury

- Statistics recommended by FAA and collected by ASSIST:
 - Core utilization (% utilized averaged over ms)
 - Processing time per sensor message
 - Processing time per thread
 - Cache miss (+hit) counts and miss (+hit) rates/ms
 - Thread execution details:
 - Assigned processor
 - State transitions (running, executing, waiting on resource, idle)
 - Deadline violations
 - Flow rates per message

Comparative Analysis

Processor Core Utilization

- Dual Core: 72% / 64%
- Quad Core: 45% / 44% / 78% / 47% (additional headroom) √

Thread Preemption Latency

- Dual Core: ~15-20 instances preemption exceeds 10%
- Quad Core: 0 instances preemption exceeds 10% √

Processing Deadline Violations

- Dual Core: 4 critical threads
 100's violations
- Quad Core: only non-critical video thread √

11:33:15

11:33:20

11:33:25

11:33:05

11:33:10

freproc.deadlineViolations — tatprocA.deadlineViolations

tatprocB.deadlineViolations
 tatprocC.deadlineViolations
 vibproc.deadlineViolations
 videoproc.deadlineViolations

Quad Core

Change Analysis – What if Scenarios

CPU_COUNT:2]	[RAM:256MB]	[ROM:128Mb
[CPU_COUNT:2]	[RAM:128MB]	[ROM:256MB]
[CPU_COUNT:2]	[RAM:256MB]	[ROM:256MB]
[CPU_COUNT:3]	[RAM:128MB]	[ROM:128MB]
[CPU_COUNT:3]	[RAM:256MB]	[ROM:128MB]
[CPU_COUNT:3]	[RAM:128MB]	[ROM:256MB]
[CPU_COUNT:4]	[RAM:128MB]	[ROM:128MB]
[CPU_COUNT:4]	[RAM:256MB]	[ROM:128MB]
[CPU_COUNT:4]	[RAM:128MB]	[ROM:256MB]
DU COUNT. 21	[DAM- 35 (MD]	10001-250

Generate Alternative System Designs

- Variations of baseline system design
- All permutations of parameters are possible
 - \circ # Cores, threads
- $_{\odot}\,\text{Size}$ of memory
- Scheduling algorithms
- $_{\odot}$ Bus types

Specify Design Criteria

- Create minimization and maximization criteria for system performance such as

 Minimize processing time
 Maximize CPU utilization
- Prioritize minimization and minimization criteria

Rank Configurations

- Simulate alternate designs in parallel using cloud resources
- Generate performance statistics for each alternative
- Rank alternative designs using Multi-Criteria Decision Analysis (MCDA)

Error and Behavioral Analysis

Define Error Propagation Paths and Behavioral Specifications

- Use AADL error annex to track failure propagations across components
- User AADL behavior annex to define behavioral specifications and resource requirements

Inject Component Failures

- Induce system failures during simulation
- Component failures can be generated to ensure evaluation of edge cases and common component failure conditions
- Based on the failure conditions for each component defined in AADL, ASSIST can algorithmically generate and simulate permutations of all possible system-wide component failure states

Identify Failure Propagations

- Identify failure propagations resulting from error propagation paths defined in Annexes
- Identify indirect and induced failure propagations resulting from defined propagation paths

Security Analysis

System Defined as Graph

- System components modeled as nodes and connections as edges
- Relationships currently represented are:
 - Subcomponents
 - Data flows
 - Connections
 - Software function calls

Assign Security Classifications

- Assign security classifications to each component
- Component can be assigned varying levels of security classification representing secured or unsecured components using AADL property specifications

Identify Vulnerabilities

- Vulnerabilities identified by determining unsecured components connected to secured components through connection and data flow
- Security vulnerability propagation identified through graph analysis
- Security vulnerability generated scores generated for system and components

DISCUSSION

© Mercury Systems, Inc.

DISTRIBUTION STATEMENT A: approved for public release; distribution unlimited

POU

mercury POC

INNOVATION THAT MATTERS TM

FOLLOW US ON SOCIAL in Y O F D O M

22