Model-based Testing and Analysis of the Cyber-Resiliency of Cyber-Physical Systems - The SCAPS Project*

Dr. Roshan K Thomas

The MITRE Corporation

rkthomas@mitre.org

* SCAPS: Secure Control Architectures for Cyber-Physical Systems

* US Patent: 10,262,143

SCAPS' Domain is Cyber-Physical Systems (CPS)

- The integration of computing, communications and physical control
- Sensors, controllers and actuators
- Diverse sectors
 - Industrial control
 - Aviation
 - Automotive
 - Electric grid
 - Medical
 - Weapons systems

Problem: How to Systematically Assess Design Vulnerabilities in Cyber-Physical Systems (CPS)

- Operational:
 - How to assess vulnerabilities in CPS designs and architecture?
 - How to increase efficiency and accuracy of security analysis?
- Scientific challenges:
 - How to systematically and efficiently analyze the attack space for a given CPS system design?
 - How to analyze where safety-oriented and fault-tolerant designs are inadequate to withstand cyber attacks?
 - How to systematically analyze and measure risk?
 - How to mitigate such risks by converging on an optimal design?
- SCAPS is creating model-based security and simulation analysis technology
- NDIA Report of 2011 calls for accelerated adoption of model-based engineering

From Conventional to Model-based Systems Security Engineering (MBSSE)

Conventional Design

- Document-centric
- Text-based requirements are isolated from structural and behavioral information
- No formal semantics
- Manual inspection to measure integrity, completeness, quality and accuracy
- Ineffective in dealing with the complexity of large systems

Model-based Engineering

- Model-centric
- Modeling constructs and relationships defined & reused
- Formal semantics
- Relationships define traceability paths
- Programmatically automate measurements

Model-Based

Engineering

FOR PUBLIC RE

bus1

(virtual_bus1)

virtual_proce

thread_group1

ISTRIBUTION UNLIN

• Effective in dealing with complexity

Model-based Security Engineering

- Capture security dependencies between diverse system aspects
- Capture dependencies between security and safety
- Security-related resiliency metrics
- Enables model in-the-loop and simulation in-the-loop testing
- Iterate to security-optimized design

© 2021 THE MITRE CORPORATION. ALL RIGHTS RESERVED.

Integrating Security Analysis with Model-based Engineering

Effects and Fault Injection

- Inject cyber-induced effects and faults into models to exercise them
- Mapping between system, cyber and control models
- Libraries of cyber and control effects

Security Analysis

- Analysis of cyber-induced faults by criticality
- Systematic elaboration of attack surface
- Security and resiliency metrics

Security Mitigation

- Architectural and behavioral primitives to mitigate attacks
- Cost-benefit tradeoff analysis among mitigation options
- Security-optimized design

A13

Technical Approach: Integrate Model-based Design with Security Analysis of CPS

- Focus is on the interface between Cyber and Control layers
- Attack effects on AADL elements are mapped to effects on simulation models
- Attacks are injected into simulation models to study physical impact

The SCAPS Security and Risk Analysis Workbench

- Web-based user interface with backend integration to simulation engines
- Imports Architecture Analysis and Design Language (AADL) and simulation models
- Injects attack effects into simulation models to observe impact at control level

SCAPS Conceptual Model for Hazard and Vulnerability Analysis

Value Proposition and Transformational Impact

- Helps to analyze the security of control systems faster, cheaper and more thoroughly
 - Potential to reduce cost of security analysis by at least 50%
- Four user communities benefit from our tools
 - System design and test engineers can uncover flaws early in the design before production and deployment
 - Forensic analysts can do a post-mortem analysis to locate and replicate security flaws reported in the field
 - Red teams can use our tools for attacks analysis during live exercises
 - Third party certifiers can exercise a control system using our tool to ensure known vulnerabilities do not exist
- Assistance in deriving an optimal secure design

Medical Example - Simulating Cyber Attack on an Analgesic Pain Management System

- Patient can ask for more analgesic medicine as desired by pressing a button
- Control system monitors and stops the pump from overdosing
- A stop or heart attack warning is reported to nurses on their monitor
- Attack 1: Prevents stop command to pump
- Attacks 2 and 3 prevent stop and death warnings from reaching the nurses

Before and After Attack Comparison

Regular Operation

Scope1

60 80 100 120 140 160

20 40 60 80 100 120 140 160 180 200

Button Pressed

Drug Level

Heart Rate

Blood Oxygen Content

Death Warning

Compromised Operation

No warning given

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0

0

20 40

Use Case Example 2: Design and Testing of an Experimental Fighter Jet

- Before moving into the next phase of design, the fighter simulation is put through security testing
- Two possible attacks were identified for evaluation
 - Using the wireless update capability, the controller software could be altered to read its inputs from the incorrect ports (e.g., 3rd input)
 - If the controller software's inputs such as pitch state or pilot commands could be made unavailable, the pilot would be unable to regain control

Fighter Jet Schemas in AADL and Simulink

Experimental Fighter AADL Schema

Experimental Fighter Simulink Schema

Attack Scenario 1 – Loss of Elevator Control

Attack Impact on Fighter Jet

Cyber-induced Faults at the Cyber (AADL) Layer

	Process	Thread	Data	Subprogram
Confidentiality	Unauthorized memory access	Unauthorized memory access	Unauthorized access	
Integrity	Tampering with process bindings (memory, processor and connection)	Tampering with thread bindings and state	Tampering with data properties including spruce text, data size	Tampering with source text, memory bindings
Availability	Induce delays in file loading; Disrupt scheduling	Prevent or delay an execution phase of a thread	Prevent or delay access	
	Processor	Memory	Bus	Device
Confidentiality		Unauthorized memory access	Unauthorized tapping into bus contents	
Confidentiality Integrity	Tampering with processor bindings (e.g., memory)	Unauthorized memory access Corrupting memory	Unauthorized tapping into bus contents Tampering with bus contents in transit	Tampering with device drivers and threads; Tampering with execution time-related properties; Tampering with execution platform bindings

Sample Cyber-to-Control Mappings

Sample Workbench User Interface: Selecting Cyber Effects

Visualizations: Summary of Simulation Runs

Experiment Summary

MITRE

Risk Analysis Enabled by Visualization

© 2021 THE MITRE CORPORATION. ALL RIGHTS RESERVED.

APPROVED FOR PUBLIC RELEASE. CASE NO: 17-2655. DISTRIBUTION UNLIMITED

Integration of Fault Trees and Attack Effects Generation

- Utilize fault models/trees (FTs)
 - Generate FTs from AADL Failure Annex
- Analyze which faults are cyber-inducible
- Generate attack trees from fault trees
- Generate attack scenarios
 - Each scenario is a different path in the attack tree
- Generate attack packs

Feature-set Evolution of the SCAPS Workbench

Increasing scale and performance

Ongoing Research: Intelligent Attack Generation

- How to intelligently attack the system to expose vulnerabilities?
- How to demonstrate that safety designs fall short in mitigating cyber attacks?
- Exploit information from:
 - Basic architecture/design assumptions, dependencies and flaws
 - Look for structural and behavioral patterns
 - Fault tree structure
 - Likelihood and severity info
 - Safety design dependencies
 - Control functions

Future Evolution of SCAPS:

Integration of Attack Scenarios, Attacker TTPs and Planning Modules

Summary

- Working Prototype of model-based CPS security and risk analysis workbench
- Development of cyber and control attack affects libraries and their mapping
- Integration of fault trees
- Visualization of risks
- Research directions
 - Intelligent attack generation to expose cyber-to-safety dependencies
 - Understanding the human factor aspects when cyber attacks are involved
 - How to derive automated mitigation strategies?
 - Development of resiliency and risk analysis metrics and methodologies

BACKUP

Modeling the Cyber Layer with Architecture Analysis & Design Language (AADL)

- Used to describe the hardware and software architecture of a system
- Allows user to link software components to their hardware components
 - E.g., Process to a processor
 - E.g., Data to memory
- Failure Annex models faults

Sample AADL schema abstractions