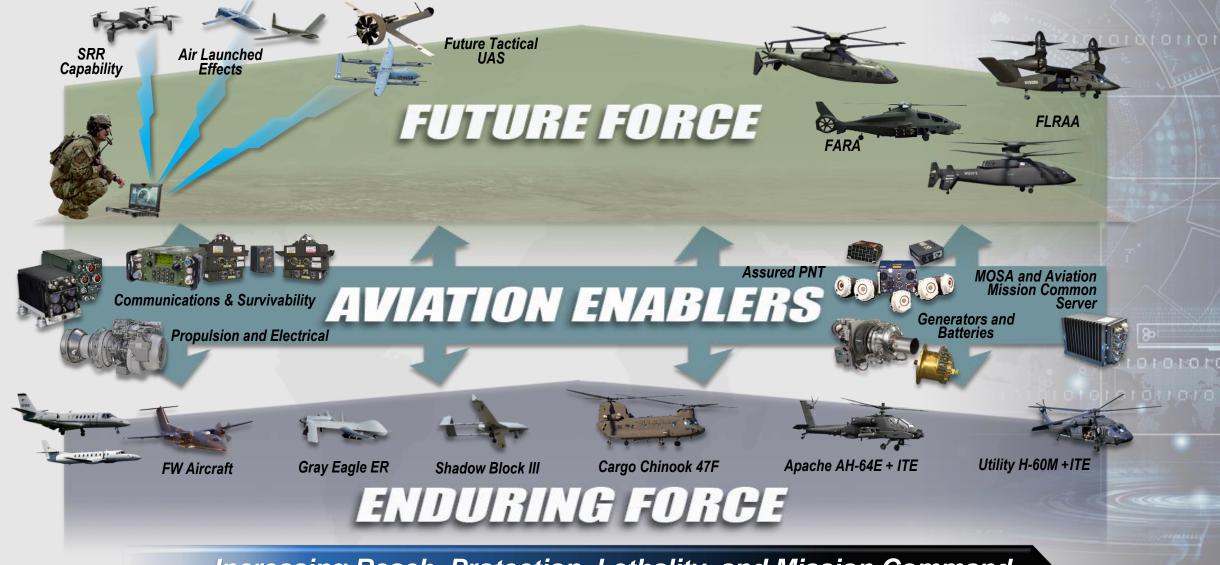


Establishing An Operationalized MOSA Approach

AADL/ACVIP Users Day 2021

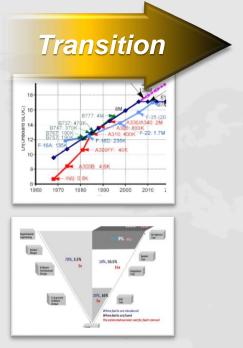
Mr. Patrick Mason


Deputy Program Executive Officer, PEO Aviation

3 February 2021

Advancing Army Aviation

Increasing Reach, Protection, Lethality, and Mission Command



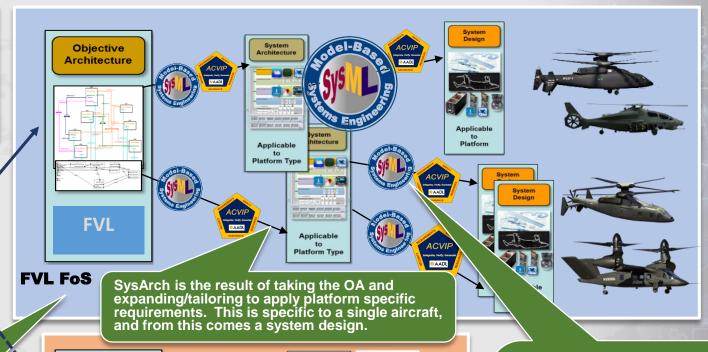
Setting the Stage - The Architectural Evolution

010101010

Yesterday ASE NAV COMMS

- Closed Hardware Architectures
- Closed Software Architectures
- Tightly Coupled Hardware/Software
- Many Unique Integrations
- Hardware Reuse (LRU Level)
- Opportunistic Software Reuse
- Document oriented procurement
- Isolated analysis
- Test-fix-test mentality

- Gov't Prescribed Open Architecture
- Open Hardware Architectures
- Open Software Architectures
- Software portability & interchangeability
- Shared Integrations (partial qualification credit)
- Strategic Reuse (HW, SW, artifacts)
- Model-based procurement
- Model-based Systems Engineering (MBSE)
- Architecture Centric Virtual Integration/Analysis


AADL/ACVIP & Future Vertical Lift (FVL)

RefArch is a consolidated list of architectural resources such as FACE, JCA, HOST, reusable assets (e.g. IDM, 231, etc), domain specific data models, AV/MSA interface, use cases/CONOPs, policies and directives, and applicable standards, tools, practices such as MBSE, ACVIP, STPA etc.

ObjArch is a selection of applicable RA content and applying it to a set of AVs that we intend to share a common set of attributes (could think of this as all sharing a "CAAS" or "MCAP" architecture, displays, etc). It is beginning to look like a system architecture, but it still is not specific to a single aircraft.

Platform Type

Utility FoS Objective Architecture Utility

IBSE Leveraging is applied to wide system level requirements modeling & analysis

MBE with ACVIP Leveraging AADL is applied to embedded computing system level modeling & analysis to mitigate integration issues

104.04.04.0

From S&T to Production & Fielding

FLRAA: Defiant

FLRAA: v280

ALE

FARA: Invictus

FTUAS

MOSA

- Generating the "Great Idea"
- Engineering "Know-How"
- Business "Savvy" to Make it Happen

Technology

Transition

Transition

Production Is a Complex, Socio-Technical System

101010

MOSA Objectives

MOSA TO Designed to Achieve Outcomes ...

... While Supporting Broader PEO MOSA **Objectives** ...

...and Aligned with MOSA ICRD
Objectives

More Effective with Aligned Program Objectives and a Common End State

More Efficient with Reduced Duplication of Effort

Credible to Industry
with Consistent
Communication and
Tangible Actions

Improved Affordability

Increased Readiness

Enhanced Capabilities

Reduced Schedule Pressure

Reduced Supply Chain Risk

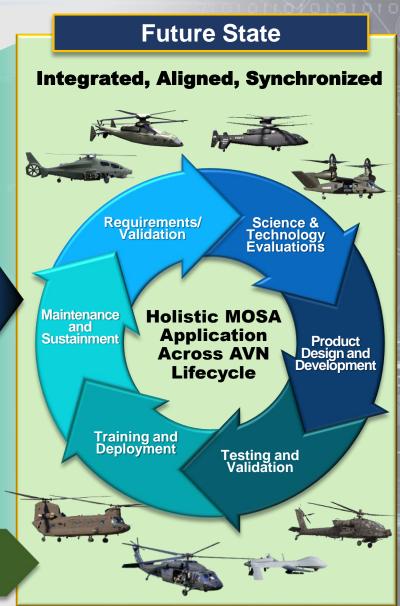
Threat Based Capability Adaptability

Faster Fielding of Innovation to Achieve Overmatch

Total Lifecycle Affordability through Competition

Enabling Commonality

PEO Driving MOSA Transformation Effort Aligning People, Tools, Processes for Successful Execution



MOSA 9 LOEs

Creating standardization, Increasing communications, Applying lessons learned, Eliminating stovepipes

- 1. Governance & Policy
- 2. Architecture & **Standards**
- 3. Software Development
- 4. Collaborative Digital **Environment**
- 5. MOSA Conformance Center
- 6. Qualification & **Material Release**
- 7. Affordability & Savings
- 8. Contracting **Efficiencies**
- 9. Strategic Communications

'Ready to Catch'
Modernization Efforts

Management Structure

Steering Committee led by PEO

Bi-monthly Meeting
AMC, FVL CFT, AVNCOE, AMCOM,
DAMO-AV, ACC, ARSOAC, CCDC AvMC

DPEO Bi-weekly Reviews

Transformation Office (Dir. Matt Sipe, Dep. Tabitha Horrocks)

Governance & Policy

Architecture & Standards

MOSA Conformance Center Software Development

Collaborative Digital Environment

Qualification and Material Release

Affordability, Funding & Savings

Contracting Efficiency

Strategic Communications

Enterprise-wide MOSA Governance

Maximize Competitive Environment Prep USG for New Industry Relations

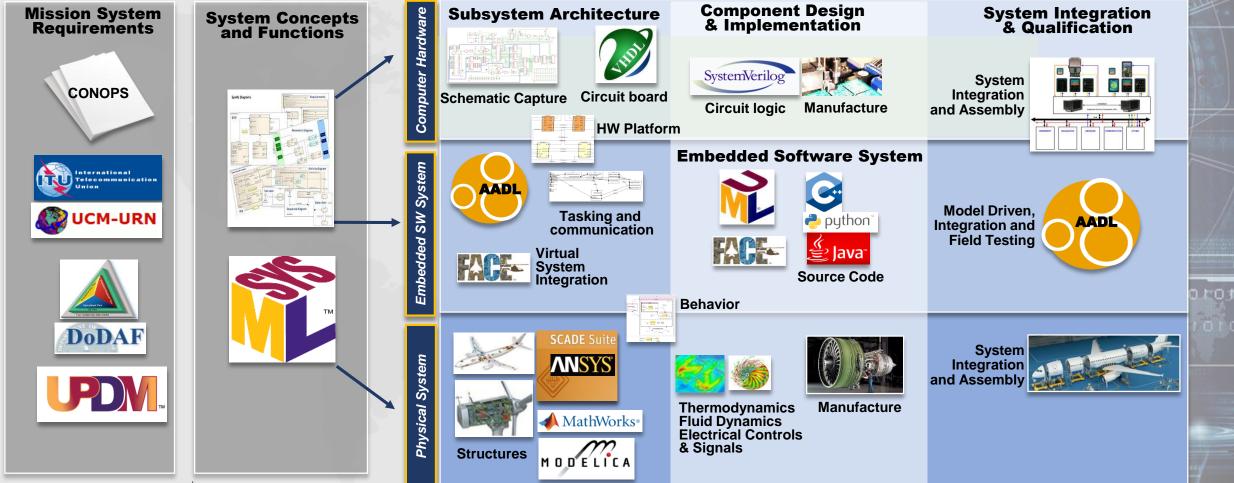
Steering Committee Led by PEO and Comprised of Army Aviation Executives to Drive Decision Making, Maintain Accountability, and De-conflict issues.

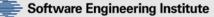
DPEO Serves as Day-to-Day Leader of This Effort, with **Enterprise Oversight** and **Accountable** for Results

Surge Support **Empowered to Stand Up Governance Model;** Responsible for Tracking Progress, Elevating Critical Decisions

MOSA Implementation to be Reviewed Thematically Across 9 Lines of Effort (4-5 LoEs Reviewed Every Two Weeks)

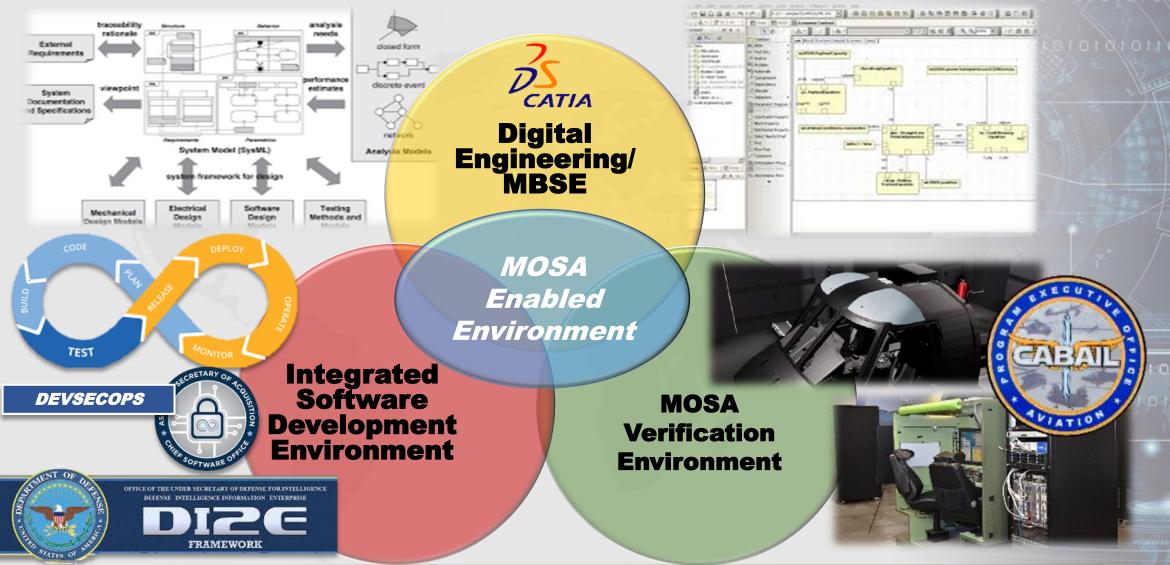
LoEs Are Working Groups, Each with an Assigned Leader From One of the PMs as an Extra Duty. Steering Committee May Provide Leaders with Surge Support to Accelerate Progress


Each LoE Lead Selected Based on His/ Her Expertise – and to Ensure Balanced Representation of Enduring Fleet & FVL



Complementary Languages and Tools

Filling the Modeling and Analysis Gap for Cyber-Physical System


© 2018 Carnegie Mellon University

Carnegie Mellon University

Development Environment Enablers

Near-term Efforts

- Issue Initial PEO Aviation MOSA Policy and Guidance
- Establish PEO Aviation MOSA **Governance** Body to Oversee Policy Implementation and Execution of MOSA Transformation Roadmap
- Identify, Prioritize, and Synchronize Cross-cutting Opportunities Focused on Major System Components ('Crown Jewels') for MOSA Implementation and Align Budgets Accordingly
- Develop PEO Aviation Reference Architecture and Component Boundaries
- Establish Contract Vehicles to Enable MOSA Implementation
- Identify Sustainable Business Model that Incentivizes Industry Implementation of MOSA
- Solicit Industry Feedback Through MSI RFI
- Invest in Infrastructure to Support Digital Environment and Tool Chains
- Focus on Software Development and Acquisition (Reuse, SDKs, USG Software Factory)
- Identify Business Model Elements to Incentivize Industry Implementation of MOSA
- Maintain Alignment with Army Futures Command (AFC) on Integrated Mission Equipment for Vertical Lift Systems (IME) and Other MOSA-related Efforts
- Ensure Continuity with ASA(ALT) Common Modular Open Architecture (CMOA) Effort

Key Take-Aways

- PEO Aviation Committed to MOSA Transformation Across the Aviation Domain
 - Expanding Beyond FVL Platforms
 - Developing Long-term MOSA Roadmap
 - Investing in MOSA-related Activities and Infrastructure
- Industry Collaboration is Critical to Successful Implementation
 - Request Quality Responses to RFIs (Industry Opportunity to Influence Future State)
 - Identify Mutually Beneficial Strategies to Make MOSA a Viable Business Case

Questions and Closing Comments

