
1Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Rapid Adjudication of Static
Analysis Alerts During CI

FY20 Team: Ebonie McNeil, Matt Sisk, David Svoboda, Hasan
Yasar, Joseph Yankel, David Shepard, and Shane Ficorilli

Presenter: Dr. Lori Flynn (PI)

2Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Document Markings
Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-0858

mailto:permission@sei.cmu.edu

3Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Line-Funded Project

• Today’s presentation focuses on our FY20 project.
• This project builds on tools and techniques from previous projects.
• For an overview of my FY16-FY20 projects, refer to my Tuesday Research Review

presentation.

Highlighted Research Focus Areas

Goal: Enable practical automated classification for more secure software and lower cost/effort.

FY20 Project Main Focus

Data quality
Wide variety of

labeled data
Improve classifier
precision & recall

Enable classifier use
via modular architecture

Enable classifier
use in CI systems

4Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

Rapid Adjudication of Static Analysis
(SA) Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

CI
Workflow

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Alert: An SA warning (with a tool checker ID,
line #, filepath, message)
AlertCondition: An alert mapped to a code
flaw taxonomy item (e.g., CWE-190)
Meta-alert: mapped to by the set of
alertConditions that differ only by checker ID.
We do adjudication and classification at
the meta-alert level.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

Goal: Enable practical automated classification
for more secure software and lower cost/effort.

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

5Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

Goal: Enable practical automated classification
for more secure software and lower cost/effort.

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

CI
Workflow

6Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

Goal: Enable practical automated classification
for more secure software and lower cost/effort.

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

CI
Workflow

7Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

Goal: Enable practical automated classification
for more secure software and lower cost/effort.

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

CI
Workflow

8Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alertGoal: Enable practical automated classification

for more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

CI
Workflow

9Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Rapid Adjudication of Static Analysis
Alerts During CI

Problem: It takes too much time to adjudicate alerts from static analysis tools during
continuous integration (CI).

Static analysis (SA) is incompletely integrated into CI development projects in the
DoD, and the selection of SA tools is limited to those with very few false positives.

The current practice is too labor intensive. We will automate it.

The DoD is moving to CI/CD but
doesn’t have a solution to this
problem.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

10Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

s
cs

Classifiers

Analyzer

Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

Classification algorithm development for CI systems that—
precisely and with high recall—classifies at least
as many manually adjudicated meta-alerts as

Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

Problem: too many alerts
Solution: automate handling

Alert: An SA warning (with a tool checker ID, line #, filepath, message)
AlertCondition: An alert mapped to a code flaw taxonomy item (e.g., CWE-190)
Meta-alert: mapped to by the set of alertConditions that differ only by checker ID.

We do adjudication and classification at the meta-alert level.

Aspirational

http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop

11Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

s
cs

Classifiers

Analyzer

Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

Problem: too many alerts
Solution: automate handling

Alert: An SA warning (with a tool checker ID, line #, filepath, message)
AlertCondition: An alert mapped to a code flaw taxonomy item (e.g., CWE-190)
Meta-alert: mapped to by the set of alertConditions that differ only by checker ID.

We do adjudication and classification at meta-alert level.

Classification algorithm development for CI systems that—
precisely and with high recall—classifies at least
as many manually adjudicated meta-alerts as

Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

Aspirational

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop

12Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Approach

Our approach enables SA meta-alerts to be adjudicated quickly during CI:
• Automated classifier use reduces manual effort when making SA meta-alert

adjudications.

• Research is required for effective classifier use in multi-tool CI/CD systems.
- Improve the correctness of meta-alert adjudication cascading between code versions

(data quality).
- Use features intended to improve classifier precision and recall:

• Semantic features
• Other features: mean time to deploy and build system data, repository logfile,

developer+org ID [1], function, and file path

The DoD is moving to CI/CD but
doesn’t have a solution to this
problem.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

[1] Cheirdari, Foteini and George Karabatis. “Analyzing False Positive Source Code Vulnerabilities Using Static Analysis Tools.” Workshop on Big Data for CyberSecurity.
December 2018.

13Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Approach: Cascading and Classification

Meta-Alert Adjudication Cascading
• For code versions 1 and 2, can a manual adjudication (e.g., true, false) for a

meta-alert from v1 be applied to a meta-alert for code v2?
• Imprecise cascading happens on a per-file analysis and uses regular expression

and/or line numbers.
• Precise cascading means analysis across a whole program using control flow,

data flow, and type flow.
Classification

• It predicts if an SA meta-alert is true or false based on statistics/AI.
• It is different from SA tool prediction of severity/risk/cost. (All SA meta-alerts are

predicted to be true by SA tools.)

Goal: Enable practical automated classification for more secure software and lower cost/effort.

14Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Rapid Adjudication of Static Analysis Alerts During CI

State of the Art/Practice

15Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SA Classification in CI: State of Practice

Sophisticated SA tools enable CI integration. Classifiers are missing or
unconfirmed.

• AlertConditions for particular flaws may halt a CI stage.
• SEI SCALe is the only multi-tool aggregator that uses classifiers.
• There are no classifiers in open source tools like Cppcheck and GCC.

There is some single-tool alertCondition-adjudication cascading between code
versions.

• Proprietary methods are used in proprietary tools.
There is no multi-tool aggregator that cascades using semantic analysis.

• Some aggregators (including SEI SCALe) use diff to cascade.

There is no existing CI/CD-integrated
tool for multiple static analyses using
classifiers OR precise cascading.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

16Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SA Classification in CI: State of Practice—Tools

NSA CAS benchmarked SA tools on test suites. Findings from recent and older [1,
2] studies include the following:

• Tool performance varies; the best tools are proprietary.
• There are pros and cons to using multiple tools:

- Multiple tools cover many code flaws; individual tools cover different flaw sets.
- Using multiple tools introduces too many alerts.

Our Strategy: Our approach uses classifiers to deal with the large number of alerts
from multiple tools.
Benefits: Automated adjudication results in cost savings and/or increased code
security. This approach may enable a practical strategic mix of free and
proprietary tools to affordably cover many code flaws.

[1] http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
[2] http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20 Methodology.pdf

Goal: Enable practical automated classification for more secure software and lower cost/effort.

http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20

17Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Two Alternate Incomplete Methods to Use SA in CI

Methods
1. Adjudicate very few alert types in CI.
2. Run SA automatically in CI, but do not adjudicate during CI.

DoD Examples
• Project X (Anonymized)

- SA alertConditions do not break commits or merges during development.
- High/critical un-addressed alertConditions prevent release.

• Project Y (Anonymized)
- Two proprietary SA tools in the CI/CD pipeline run all checkers (per tool) on every build.
- Some new alertConditions break the build. Select conditions require review, but they ignore many

other conditions.
• Collaborator G (Anonymized FY16 Collaborator)

- The collaborator used a single SA tool with cascading but without classifiers.
- They made manual adjudications on a subset of code flaw conditions.

Our work uses method 1

Goal: Enable practical automated classification for more secure software and lower cost/effort.

18Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Rapid Adjudication of Static Analysis Alerts During CI

Technical Approach and
Progress

19Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classification in CI: Technical Underpinnings
We build on previously developed SEI tools and research advances:

• SCALe SA aggregator and meta-alert auditing system
• Test suites used in novel ways for classifier development
• SCAIFE prototype modular system used to do meta-alert classification and

prioritization
• CI/CD systems: DevSecOps tools and techniques (Hasan Yasar)

We plan to build on the previous work of Prof. Wei Le, Assistant Professor of CS
at Iowa State University:

• Matching defects from one code version to others
• Similar idea but specific to meta-alert matching, for C++ and Java

- Templates in C++
- Polymorphism and exception handling must be handled for C++ and Java

Classifier research
• Semantic and other features (CI/CD, etc.)

Goal: Enable practical automated classification for more secure software and lower cost/effort.

20Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Precisely Cascading Adjudications from Previous Code Versions
1. Build on Prof. Wei Le’s previous work for C.
2. Instead of matching patch suitability, determine if meta-alert adjudication should be cascaded.
3. Develop a new static analysis method that matches flaws in different versions of Java or C++ code.
4. Test programs for correctness. Test on open source codebases; compare to diff cascading to measure

improvement.
Challenges

• Templates in C++
• Polymorphism and exception handling must be handled for C++ and Java
• An algorithm that must be fast to work in the CI system

Goal: Enable practical automated classification for more secure software and lower cost/effort.

CWE-190

CWE-119

CWE-398

CWE-758

CWE-190

CWE-128

CWE-119

CWE-398

CWE-910

CWE-908
Code v1

Code v2Tool X alertConditions
(adjudicated FP)

Tool X alertConditions,
diff cascaded FPs

Same, but precisely
cascaded FPs

CWE-190

CWE-398

CWE-128

CWE-119

CWE-398

CWE-910

CWE-908
Enable classifier use

via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

21Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SA Classification in CI: Technical Approach with Additional Features
1. Generate semantic features using and building a deep belief network (DBN).
2. Apply a dimensionality reduction technique (e.g., principal component analysis) to minimize

feature space that is occupied by traditional features.
3. Train existing classifiers (e.g., gradient boosting decision trees) using a combination of traditional

and semantic features.
4. Improve classification precision and recall by applying and developing better ML models.
5. Use research techniques such as the following to transfer knowledge for this domain:

• from artificial test-suite data to natural program data
• across different codebases of natural programs

6. Test precision and recall for labeled data and time, counting manually vs. automatically
adjudicated.

Challenges
• Incorporate semantic features into the existing ML pipeline without degrading system performance

(e.g., time to build classifier).

• Published transfer learning approaches include inductive and transductive transfer learning. Our
work is closer to the latter, but it fits neither definition completely. It may be necessary to (1) adjust
existing techniques or (2) create a new transfer learning approach.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

22Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SCAIFE Definitions

SCAIFE is a modular architecture that enables static analysis meta-
alert classification and advanced prioritization.

• The SCAIFE API defines interfaces between the modular parts.
• SCAIFE systems are software systems that instantiate the API.
• Our SCAIFE system releases include a SCALe module plus much more.

SCAIFE = Source Code Analysis Integrated Framework Environment

Goal: Enable practical automated classification for more secure software and lower
cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

23Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SCAIFE Architecture
• SEI SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator tools
• Single static analysis

tools

Any static analysis tool can
instantiate APIs to become
a UI Module. For example

Source Code Analysis Integrated
Framework Environment (SCAIFE)

SCAIFE is a modular architecture
that enables users to efficiently
start to use classifiers with a
wide variety of systems and
tools:
• The formal SCAIFE API

definition enables automated
code generation to quickly
instantiate API calls and
generate server stubs in
many code languages. This
reduces the effort required to
integrate existing systems
and tools.

• The UI Module instantiation of
SCALe is publicly available
(GitHub scaife-scale branch).

• Collaborators can get a full
SCAIFE instantiation and use
it as-is or substitute any
module(s) and use the others.

L. Flynn, E. McNeil, and J. Yankel. “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE Code, the SCAIFE API, Swagger-Editor, and Developing Your Tool with Auto-
Generated Code.” SEI Technical Manual. July 2020.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

FY19

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354

24Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SCAIFE Architecture

SCAIFE’s modular
architecture (i.e., efficient
integration with many tools
and systems) enables
classifier use during
continuous integration.

L. Flynn, E. McNeil, and J. Yankel. “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE Code, the SCAIFE API, Swagger-Editor, and
Developing Your Tool with Auto-Generated Code.” SEI Technical Manual. July 2020.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

FY20

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354

25Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Integrated CI-SCAIFE Design Highlights

• SCAIFE-fail or SCAIFE-pass
- Fail is defined as any critical condition meta-alert that lacks a cascaded FP and

classifier confidence FP is less than the threshold.
- Pass is defined as all other cases.

• The CI build passes only if SCAIFE and all other tests pass.
• There are complex design aspects: (1) tracking all build data through SCAIFE, (2) enabling

non-build data to improve the classifier simultaneously, and (3) making it all fast.
• The project specifies critical build conditions (e.g., CWE-190 and INT31-C).
• The project specifies the confidence threshold (e.g., 90%) for classifier predictions.
• CI sends build data (e.g., code change commit data and associated tool output) to SCAIFE.
• SCAIFE cascades adjudications.
• SCAIFE classifies remaining non-adjudicated meta-alerts.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

26Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20: Select Code/API Artifacts

Goal: Enable practical automated classification for more secure software and lower cost/effort.

27Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Select Artifacts (New Detail or Item) –1

• (Oct 2019 and Feb, Apr, and Sep 2020) GitHub publication of SCAIFE API
versions https://github.com/cmu-sei/SCAIFE-API

• (Apr 2020) Published the open dataset “RC_Data” for classifier research to the SEI
CERT Secure Coding webpage “Open Dataset RC_Data for Classifier Research”;
database with static analysis alerts from open-source tools, adjudications, code
metrics, and more for two codebases

• (Jun 2020) Presentation “Automated Classifiers to Adjudicate Static Analysis Alerts:
Challenges, Progress, and Next Steps” (Lori Flynn, Stephen Adams, and Tim
Sherburne) to DoD’s DEVCOM Cyber Community of Interest

• (Jun 2020) Presentation “Automated Classifiers to Adjudicate Static Analysis Alerts:
Challenges, Progress, and Potential Collaborations with NASA IV&V” (L. Flynn) to
leaders of the NASA IV&V Static Code Analysis Working Group (SCAWG)

Goal: Enable practical automated classification for more secure software and lower
cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://github.com/cmu-sei/SCAIFE-API
https://wiki.sei.cmu.edu/confluence/display/seccode/Open+Dataset+RC_Data+for+Classifier+Research

28Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Select Artifacts (New Detail or Item) –2

• (Jul 2020) Technical manual “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE
Code, the SCAIFE API, Swagger-Editor, and Developing Your Tool with Auto-
Generated Code” (L. Flynn, E. McNeil, and J. Yankel); instructions for three types of
SCAIFE System code access: (1) none, (2) access to SCALe code, or (3) full access

• (Jul 2020) Auto-generated Java client code for the five SCAIFE API modules for a DoD
collaborator to help them quickly start to instantiate SCAIFE API calls from their tool

• (Sep 2020) Blog post “Managing Static Analysis Alerts with Efficient Instantiation of the
SCAIFE API into Code and an Automatically Classifying System” by Lori Flynn

• (Sep 2020) Presentation “Using AI to Find Security Defects in Code / Build More
Secure Software” at the Defense Science & Technology Agency (DSTA) Workshop

• (Sep 2020) Presentation “Rapid Adjudication of Static Analysis Meta-Alerts During
Continuous Integration,” Software Assurance Community of Practice (SwA CoP)

• (Sep 2020) SCALe code at https://github.com/cmu-sei/SCALe/tree/scaife-scale
• (Sep 2020) Test data generated for ‘diff’ cascading for precise cascading comparison

Goal: Enable practical automated classification for more secure software and lower
cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354
https://github.com/cmu-sei/SCALe/tree/scaife-scale
https://insights.sei.cmu.edu/author/lori-flynn/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=645757
https://github.com/cmu-sei/SCALe/tree/scaife-scale

29Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Progress Detail: FY20 Collaborations (DoD Anonymized)

DoD Collaborator A and the University of Virginia (UVA) tested multiple SCAIFE versions.
Our SCALe version was merged with SCALe-UVA new features for collaborator A’s use.

DoD Collaborator B tested the SCAIFE release. The SCAIFE API implementation is in-
progress (registration of API as a SCAIFE UI Module).

DoD Collaborator C tested multiple versions of SCAIFE.

DoD Collaborator D provided technical assistance and training material. Testing started in
September.

DoD Collaborator E added BoM per their requirement; testing starts in FY21.

The SWAMP (Mordgridge and UW Madison) collaborator provided SCAIFE API feedback.
They discussed possible SWAMP+ SCAIFE API integration, but because of SWAMP funding
issues, this integration is not likely.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

30Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Rapid Adjudication of Static Analysis Alerts During CI

Relevancy and Impact

31Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Measures of Success –1

Organizations that develop tools and analyze code will realize the following cost-
saving benefits:

• Manually adjudicated alerts are cut in half (i.e., saves money).
• Adjudicated meta-alerts are doubled (i.e., get more security at same cost).
• Combinations of cost savings and increased adjudication are realized.

By integrating with CI, more SA-identified flaws can be caught and fixed early in
development (i.e., saves money).
Using a precise cascader developed in this project, organizations can improve their
code security analyses.
Using other code and algorithms developed in this project (e.g., SCAIFE system,
API, and classification/active learning) enables practical meta-alert classification in
their systems.
Goal: Enable practical automated classification for more secure software and lower cost/effort.

32Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Measures of Success –2

Targeted on-ramps for transition include the following:
• Research project collaborators
• Discussions with SEI engineers on DoD contract projects

- One project could analyze twice the SA meta-alerts with the same effort.
- Another project could integrate SA meta-alert adjudication in their CI.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

33Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SA Classification in CI: Relevance/Impact for General DoD State of the Practice

Enable the DoD to more efficiently address SA meta-alerts in CI/CD
time constraints by halving the time to manually adjudicate meta-alerts for
the same level of security.
Envisioned classifier-use scenario in Authorization to Operate (ATO)

• DoD Program PMO must provide evidence on how software risks
managed
- PMO needs ATO by Authorizing Official
- How to do this for CI/CD systems is being developed and tested, now

• Possibly CATO (Continuous ATO) option
 CWEs and other flaw conditions might be required to adjudicate meta-alerts and

fix TPs

• We envision this classifier-use scenario in CATOs:
- CATO covers more code flaw conditions.
- Meta-alerts classified expected-False would not require manual adjudication.
- Even if condition not mentioned in a CATO, classifier use frees more adjudication

effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

34Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Project Impacts Time Frame

NEAR MID FAR

* Version of SCALe used in SCAIFE System implementation

Goal: Enable practical automated classification for more secure software and lower
cost/effort.

NEAR MID FAR

Public can use/review
SCAIFE API and SCALe*
module.
DoD collaborators will
further test SCAIFE to
• provide data and

feedback
• integrate their tools using

the API
The FY20-21 research
project incorporates
continuous integration (CI)
into architecture design.

More collaborators (DoD
and non-DoD) to test
SCAIFE with CI.
Design improvements for
transition include
• classification precision
• latencies
• bandwidth/disk/memory

use
• business continuity
• scalability

A wide variety of systems
will do automated meta-
alert classification, using
• SCAIFE System
• SCAIFE API
Goal: Provide better
software security, or less
time and cost for the same
security (DoD and non-
DoD).

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

35Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Project Team

Dr. Lori Flynn

Ebonie McNeil

David Svoboda

Matt Sisk

Hasan Yasar

Joseph Yankel

Shane Ficorilli

David Shepard

36Rapid Adjudication of Static Analysis Alerts During CI
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

For More Information

Contact Us
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu
Email: info@sei.cmu.edu

http://www.sei.cmu.edu/
http://www.sei.cmu.edu

	Rapid Adjudication of Static Analysis Alerts During CI
	FY20 Line-Funded Project
	Rapid Adjudication of Static Analysis (SA) Meta-Alerts During CI
	Classifiers
	Approach
	Approach: Cascading and Classification
	State of the Art/Practice
	SA Classification in CI: State of Practice
	SA Classification in CI: State of Practice—Tools
	Two Alternate Incomplete Methods to Use SA in CI

	Technical Approach and Progress
	Meta-Alert Classification in CI: Technical Underpinnings
	Precisely Cascading Adjudications from Previous Code Versions
	SA Classification in CI: Technical Approach with Additional Features
	SCAIFE Definitions
	SCAIFE Architecture
	Integrated CI-SCAIFE Design Highlights
	FY20: Select Code/API Artifacts
	FY20 Select Artifacts (New Detail or Item) –1
	FY20 Select Artifacts (New Detail or Item) –2
	Progress Detail: FY20 Collaborations (DoD Anonymized)

	Relevancy and Impact
	Measures of Success –1
	Measures of Success –2
	SA Classification in CI: Relevance/Impact for General DoD State of the Practice
	Project Impacts Time Frame

	FY20 Project Team
	For More Information

