
1Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Untangling the Knot: Enabling
Rapid Software Evolution

James Ivers

2Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the
copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to
the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM20-0856

3Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Software Is an Essential Building Material

Our ability to work with software
significantly influences project cost,
schedule, time to field, and other concerns.

The ability to efficiently build, change, and
evolve software depends on its architecture
and how that architecture is realized in
code.

Architectures that are well aligned with
needs allow faster changes with greater
confidence.

4Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Software Is Never Done

Change is inevitable
• Requirements change
• Business priorities change
• Programming languages change
• Deployment environments change
• Technologies and platforms change
• Interacting systems change
• ...

To adapt to such changes, we need to
periodically improve software structure
(architecture) to match today’s needs.

5Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

An Automated Refactoring Assistant

We have developed an automated refactoring assistant for
developers that improves software structure for several
common forms of change that involve feature isolation:

• Solves project-specific problems
• Uses a semi-automated approach
• Addresses all three labor-intensive activities
• Allows refactoring to be completed in less than 1/3

of the time required by manual approaches

Refactoring is a technique for
improving the structure of
software, but it is typically a
labor-intensive process in
which developers must

• figure out where changes
are needed

• figure out which
refactoring(s) to use

• implement refactorings by
rewriting code

Project-Specific Goal

Source Code

Refactored
Source Code

Refactoring
Assistant

J. Ivers, I. Ozkaya, R. L. Nord. Can AI Close the Design-Code Abstraction Gap? Software Engineering
Intelligence Workshop 2019, co-located with Intl. Conference on Automated Software Engineering: 122-125.

6Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Category 1: Input to Funding Decisions

Most organizations have an appetite for more software
changes than their budgets can support. Data-driven
decision making benefits from richer forms of data.

Sample scenarios:

• Assess contractor cost estimates for architecture
improvements

• Support portfolio analysis and prioritization activities

Our refactoring assistant
gathers important data useful
as inputs to a cost estimate:

• specific to the project goal
• localized to the entities

affected by the proposed
change

• traceable to specific lines of
code

7Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Category 2: Comparing Refactoring Options

As part of many rearchitecting or modernization
activities, development teams have options on how
to restructure software. However, they often lack good
tools for determining the relative merits of different
proposed solutions.

Sample scenario:

• Compare different options for breaking a monolithic
application into independent services or microservices

Our refactoring assistant can
be used to compare the
difficulty of alternate scenarios:

• sketch multiple ways of
partitioning the monolith

• use the tool's initial analysis
to estimate difficulty for
each option

• use the tool's refactoring
recommendation features to
assess ripple effects and
downstream challenges

8Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Category 3: Automating Refactoring

Restructuring software is often a necessary first step to
take advantage of new technologies or add new
capabilities.

Sample scenarios:
• Migrate capabilities to the cloud
• Containerize capabilities to embrace DevOps
• Reuse a capability across multiple systems
• Replace an outdated component with a new alternative

Our refactoring assistant
automatically recommends
refactorings that speed
evolution (also reducing cost):

• recommendations isolate
specified software from its
original context

• minimal configuration is
required to generate
recommendations

• engineers can review all
changes before application

• implementing
recommendations is
straightforward

9Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Key Concept – Problematic Couplings

Only certain software dependencies interfere
with any particular goal.

For example, if we want to harvest a feature:

• The core problem is dependencies (red
lines) from software being harvested to
software that is being left behind

• All other dependencies are irrelevant to
the goal, allowing us to focus our analysis
and search for solutions

This insight enables us to apply search-
based software engineering techniques
and treat this as an optimization problem.

10Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Problem Analysis

11Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Generating Refactoring Recommendations

12Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Refactoring Recommendations

Our prototype generates recommendations
as a sequence of refactorings:

• clear directions for a developer
• independently reviewable prior to changing code
• built on refactorings supported by development

environments
• future potential to automate application to code

13Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Satisfying Multiple Criteria

Examples include
• solution to the core problem – minimizing problematic

couplings
• less work – minimizing code changes and unrealized

interfaces
• maintainable code – improving code quality metrics
• understandable code – maximizing semantic coherence
• secure code – minimizing public members

Our prototype uses a multi-
objective genetic algorithm,
based on NSGA-II, to generate
Pareto optimal solutions that
represent different trade-offs
among objectives.

We use a combination of fitness functions to generate
recommendations that developers will accept.

14Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Identifying Good Fitness Functions

Correlation matrix
(method: Spearman)

Good fitness functions measure distinct
underlying phenomena.

15Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Pareto Optimal Solutions

• Trade-offs among
objectives are normal

• Pareto optimality allows
us to generate a set of
good solutions that
represent different trade-
offs

• Developers can choose
from these options to suit
their context

Solutions that solve most
of the problem at the cost
of adding more code

Solutions that add very little
code at the cost of solving
much less of the problem

Compromise solutions (solving
2/3s of the problem while adding
< 30% to the original code)

16Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Tuning Algorithm Metaheuristics

Actively experimenting with the factors that influence search effectiveness:
• number of generations
• population size
• crossover rate
• mutation operation

• selection functions
• archive mechanics
• available refactorings
• fitness functions

17Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Summary

Scenario Maturity Expected Results

Input to Funding
Decisions

Available now
(TRL 4)

Enumeration of problematic couplings,
their locations, and types potentially
impacted by proposed change as data
to inform cost estimates

Comparing
Refactoring Options

Available now
(TRL 4)

Enumeration of problematic couplings,
their locations, and types potentially
impacted by proposed change as data
to inform cost estimates

Automating
Refactoring

Ready for
pilot application
in 3–6 months

Recommended refactorings that
• enable the proposed change
• address multiple criteria

All scenarios require
• source code
• proposed isolation goal

Programming languages
• C# is ready now (tested up

to 1.2M SLOC)
• Java support could be ready

in 2–3 months for first two
scenarios

We can apply our prototype to the following scenarios:

18Untangling the Knot
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Looking Ahead:
Next-Generation Automation for Software Evolution

The SEI’s work and vision is to
• develop automation that DoD

organizations can trust to provide
accurate information on the size,
consequences, and resources needed
for software changes

• advance the state of the art to allow
developers to sketch proposed changes
in the language of design and to trust that
automation can realize those changes

J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried. Next Generation Automated
Software Evolution: Refactoring at Scale. 2020. 28th Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ‘20). ACM, Virtual Event, USA.

Contact us at info@sei.cmu.edu if you
are interested in partnering with us.

	Untangling the Knot: Enabling Rapid Software Evolution
	Document Markings
	Software Is an Essential Building Material
	Software Is Never Done
	An Automated Refactoring Assistant
	Category 1: Input to Funding Decisions
	Category 2: Comparing Refactoring Options
	Category 3: Automating Refactoring
	Key Concept – Problematic Couplings
	Problem Analysis
	Generating Refactoring Recommendations
	Refactoring Recommendations
	Satisfying Multiple Criteria
	Identifying Good Fitness Functions
	Pareto Optimal Solutions
	Tuning Algorithm Metaheuristics
	Summary
	Looking Ahead: �Next-Generation Automation for Software Evolution

