
1Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Static Analysis Classification:
Line-Funded Research FY16-20

FY20 Team: Ebonie McNeil, Matt Sisk, David Svoboda, Hasan
Yasar, Joseph Yankel, David Shepard, and Shane Ficorilli

Presenter: Dr. Lori Flynn (PI)

2Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Document Markings
Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-0859

mailto:permission@sei.cmu.edu

3Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Static Analysis Classification: Line-Funded Research FY16-20

• In the last five years of line-funded research projects I’ve led, several techniques and tools were
developed.

• Each project built on tools and techniques from the previous project.
• For more details on my FY20 project, attend my Friday Research Review presentation.
• At the conclusion of this presentation, I include ideas for combining SA classification and

automated code repair.

Highlighted FY16-20 Research Focus Areas

Goal: Enable practical automated classification for more secure software and lower cost/effort.

Data quality
Wide variety of

labeled data
Improve classifier
precision & recall

Enable classifier use
via modular architecture

Enable classifier
use in CI systems

4Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Overview

Static analysis (SA) is an analysis of code without executing it:
• Automated SA is widely used.
• It is a normal part of testing by DoD and commercial organizations.

Definitions: An alert is an SA warning (with a checker ID, line #, filepath, message), an alertCondition is an alert mapped to a code
flaw taxonomy item (e.g., CWE-190), and a meta-alert is mapped to by the set of all alertConditions that differ only by checker ID.
We do adjudication and classification at the meta-alert level.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

Aspirational

5Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification:
Line-Funded Research FY16-20

Five Years in Two Slides

6Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY16-19 Static Analysis Meta-Alert Classification Research

FY16
• Issue addressed: classifier

accuracy
• Novel approach: use multiple

static analysis tools as
features

• Result: increased accuracy

FY17
• Issues addressed: data quality,

too little labeled data for
accurate classifiers for some
conditions (e.g., CWEs, coding
rules)

• Novel approach: audit
rules+lexicon; use test suites
to automate the production of
labeled (true/false) meta-alert
data* for many conditions

• Result: high precision for more
conditions

FY18-19
• Issue addressed: little use of

automated meta-alert
classifier technology (requires
$$, data, experts)

• Novel approach: develop an
extensible architecture with a
novel test-suite data method

• Result: wider use of
classifiers (less $$, data,
experts) with an extensible
architecture, API, software to
instantiate architecture, and
adaptive heuristic research

* By the end of FY18, ~38K new labeled (T/F) meta-alerts from eight SA tools on the Juliet test suite (vs.
~7K from CERT audit archives over 10 years)

Goal: Enable practical automated classification for more secure software and lower cost/effort.

7Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Static Analysis Meta-Alert Classification Research

FY20 (of a two-year project, FY20-21)
• Issue addressed: It takes too much time to adjudicate (i.e., audit) static analysis meta-alerts

during continuous integration (CI).
• Novel approach: During CI builds, use classifiers with precise cascading and CI/CD features.
• Results

- Design for CI-SCAIFE system integration
- SCAIFE System v1 release (classifier defined, run, and results can be viewed from [G]UI module)
- Defined cascading API
- Less-precise cascading using the API
- Test results for less-precise cascading
- Significant progress on CI-SCAIFE system integration development
- Deployment and testing by DoD collaborators (multiple rounds)
- A published RC_Data open dataset for improved classifier research
- APIs, technical manuals, and SCALe public publication

• FY21 plan: a precise cascading algorithm, improved classifiers, full integration
Goal: Enable practical automated classification for more secure software and lower cost/effort.

8Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification:
Line-Funded Research FY16-20

Data Quality: Audit Lexicon
and Rules

9Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classifiers and Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Select
candidate
code bases for
evaluation

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

10Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classifiers and Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Run SA Tool(s)
collecting code alerts
and metrics (e.g.
complexity)

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

11Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classifiers and Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Convert alerts to
common format and
map to CERT Secure
Coding Rules/CWEs

Goal: Enable practical automated classification so all meta-alerts can be addressed.

 MITRE Common Weakness Enumeration (CWE) https://cwe.mitre.org/index.html
 SEI Secure Coding Standards https://wiki.sei.cmu.edu/confluence/display/seccode

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://cwe.mitre.org/index.html
https://wiki.sei.cmu.edu/confluence/display/seccode

12Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classifiers and Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Humans evaluate the
violations (e.g.,
marking them as
TRUE or FALSE)

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

13Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classifiers and Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Use the training data to
build machine learning
classifiers that predict
TRUE and FALSE
determinations for meta-
alerts that aren’t yet
manually adjudicated.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

14Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classifiers and Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
What does
TRUE/FALSE mean?
Are there other
determinations I can
use?

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

15Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Data Quality: What Is Truth?

One collaborator reported using the determination true to indicate that the
issue reported by the meta-alert was a real problem in the code.
Another collaborator used the determination true to indicate that
something was wrong with the diagnosed code, even if the specific issue
reported by the meta-alert was a false positive.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

16Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Meta-Alert Classifiers and Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data Inconsistent assignment of
audit determinations may
have a negative impact on
classifier development.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

17Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Data Quality: Lexicon and Rules

• We developed a lexicon and auditing rule set for our collaborators.
• It includes a standard set of well-defined determinations for static

analysis meta-alerts.
• It also includes a set of auditing rules to help auditors make consistent

decisions in commonly encountered situations and corner cases.

Different auditors should make the same determination for a given meta-alert.

Improve the quality and consistency of audit data for the purpose of building
machine learning classifiers.

Help organizations make better-informed decisions about bug fixes, development,
and future audits.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

18Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Lexicon: Audit Determinations

Supplemental Determinations

Audit
Determinations

Choose ONE per meta-alert. Choose ANY NUMBER per meta-alert.

Dangerous
Construct

Ignore

Inapplicable
Environment

Dead

Basic Determinations

Unknown (Default)

True False

Complex Dependent

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

19Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Data Quality: Audit Rules

Goals
• Clarify ambiguous or complex auditing scenarios.
• Establish assumptions auditors can make.
• Overall, help make audit determinations more consistent.

We developed 12 rules:
• We drew on our experiences auditing code bases in the SEI CERT

Division.
• We trained three groups of engineers on the rules, and we incorporated

their feedback.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

20Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification:
Line-Funded Research FY16-20

Classifier Development, Data, &
Enabling Architectures
Research Tooling Too

21Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Static Analysis Meta-Alert Auditing
Framework
Developed by the SEI for ~10 years.

• GUI front end to examine meta-alerts and
associated code

• Meta-alert adjudications (true, false) stored in
database

Use for Research Projects
• We enhanced the framework with features for

research.
• Collaborators use it on their codebases.
• Researchers analyze audit data.

SEI SCALe Framework: Background

After running SA tools, meta-alert adjudication can happen at any point in the software development lifecycle.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

22Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Archive Sanitizer for Collaborator Data Sharing

We added a data sanitizer to SCALe that has the following functions:
• Anonymizes sensitive fields
• Has an SHA-256 hash with salt
• Enables analysis of features correlated with meta-alert confidence

The audit archive for the project is in a database:
• Database fields may contain sensitive information.
• The sanitizing script anonymizes or discards fields:

- Diagnostic message
- Path, including directories and filename
- Function name
- Class name
- Namespace/package
- Project filename

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

Practical use of
classification

23Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Data Used for Classifiers

Data used to create and validate
classifiers:

• CERT-audited meta-alerts:
- ~7,500 audited meta-alerts

• Three collaborators that audit their
own codebases with our auditing
research prototype tool called
“enhanced SCALe”

We pooled data (CERT and
collaborators) and segmented it:

• Segment 1 (70% of data): train
model

• Segment 2 (30% of data):
testing

We added classifier variations on
a dataset:

• Per-rule
• Per-language
• With/without tools
• Others

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

24Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

CERT-Audited Archives Characterization

• We had labeled data for 158 of
382 CERT rules.*

• There were 58 CERT coding
rules with 20 or more audited
(labeled) meta-alerts.

• The other 324 CERT rules have
little or no labeled data.

• For 25 rules, all (or close) were
determined one way (true or
false).

• 2,487 were true, and 4,980 were
false

Goal: Enable practical automated classification so all meta-alerts can be addressed.
* SEI CERT Secure Coding Standards: https://wiki.sei.cmu.edu/confluence/display/seccode

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://wiki.sei.cmu.edu/confluence/display/seccode

25Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Big savings: A manual audit of any 37,853 meta-alerts
from ‘natural’ programs estimated at 1,230 hours
minimum (117 seconds per meta-alert audit*).

• It’s unlikely that these meta-alerts would cover
many conditions/flaws covered by the Juliet test
suite.

• We needed true and false labels for classifiers.
• Realistically, a hugely larger manual auditing

time is required to develop equivalent data; way
more than 1,230 hours would be required.

These are initial metrics; we will collect more data as
we use more tools and test suites.

Analysis of Juliet Test Suite: Initial 2018 Results

Automated
Adjudication

Labeled Meta-Alert (counts a
fused alertCondition once)

TRUE 13,330
FALSE 24,523

Lots of new data for creating
classifiers

(37,853 labeled meta-alerts)

*N. Ayewah and W. Pugh. "The Google FindBugs Fixit”, International Symposium on Software Testing and Analysis, ACM, 2010.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

26Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SCAIFE Definitions

SCAIFE is a modular architecture that enables static analysis meta-alert
classification plus advanced prioritization.

• The SCAIFE API defines interfaces between the modular parts.
• SCAIFE systems are software systems that instantiate the API.
• Our SCAIFE system releases include a SCALe module plus much more.

SCAIFE = Source Code Analysis Integrated Framework Environment

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

27Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SCAIFE Architecture Approach
To efficiently develop a robust API that enables widespread classifier use, we need a
system architecture that does the following:
• Integrates with existing static analysis tools and aggregators (including SCALe)
• Supports classification and adaptive heuristic functionality
• Demonstrates fast response times for average and worst-case scenarios
• Provides extensibility for future research in static analysis, classification, architecture,

and SecDevOps

• Big O analysis was useful.
• Design decisions required balancing goals and analyzing tradeoffs.

Swagger/OpenAPI Open Source Development Toolset
• Quickly develops APIs following the OpenAPI standard
• Auto-generates code for servers and clients in many languages
• Tests server and client controllers with Swagger UI
• Is widely used (10,000 downloads/day)

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

28Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SCAIFE Architecture
• SEI SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator tools
• Single static analysis

tools

Any static analysis tool can
instantiate APIs to become
a UI Module. For example

Source Code Analysis Integrated
Framework Environment (SCAIFE)

SCAIFE is a modular architecture
that enables users to efficiently
start to use classifiers with a
wide variety of systems and
tools:
• The formal SCAIFE API

definition enables automated
code generation to quickly
instantiate API calls and
generate server stubs in
many code languages. This
reduces the effort required to
integrate existing systems
and tools.

• The UI Module instantiation of
SCALe is publicly available
(GitHub scaife-scale branch).

• Collaborators can get a full
SCAIFE instantiation and use
it as-is or substitute any
module(s) and use the others.

L. Flynn, E. McNeil, and J. Yankel. “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE Code, the SCAIFE API, Swagger-Editor, and Developing Your Tool with Auto-
Generated Code.” SEI Technical Manual. July 2020.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354

29Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

SCAIFE Architecture
SCAIFE’s modular
architecture (i.e., efficient
integration with many tools
and systems) enables
classifier use during
continuous integration.

L. Flynn, E. McNeil, and J. Yankel. “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE Code, the SCAIFE API, Swagger-Editor,
and Developing Your Tool with Auto-Generated Code.” SEI Technical Manual. July 2020.

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354

30Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification:
Line-Funded Research FY16-20

FY18-19 Artifacts

31Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY18 Software Artifacts

First Public SCALe
Release (2.1.4)

Goal: Enable practical automated classification so all meta-alerts can be addressed.

• More recent versions available
• Notable: Multiple releases for collaborator feedback throughout

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

32Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY18: Non-Code Publications
Publication Goal Publications and Papers

Help developers and analysts
provide feedback on our API,
and use new SCALe features.

• SEI special report: Integration of Automated Static Analysis Alert
Classification and Prioritization with Auditing Tools (August 2018)

• SEI blog post: SCALe: A Tool for Managing Output from Static
Code Analyzers (September 2018)

Explain classifier development
research methods and results.

• Paper: Prioritizing Alerts from Multiple Static Analysis Tools, Using
Classification Models, SQUADE (ICSE workshop)

• SEI blog post: Test Suites as a Source of Training Data for Static
Analysis Alert Classifiers (April 2018)

• SEI podcast (video): Static Analysis Alert Classification with Test
Suites (September 2018)

Enable developers and
analysts to better understand
tool coverage for code flaws
using our inter-taxonomy
precise mapping method.

• CERT manifest for Juliet (created to test CWEs) for testing CERT
rule coverage with tens of thousands of tests (previously under
100)

• Per-rule precise CWE mapping in two new CERT C Standard
sections [1] [2]

Goal: Enable practical automated classification so all meta-alerts can be addressed.

These resources remain useful

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://insights.sei.cmu.edu/sei_blog/2018/09/scale-a-tool-for-managing-output-from-static-code-analyzers.html
https://dl.acm.org/citation.cfm?id=3194100
https://insights.sei.cmu.edu/sei_blog/2018/04/static-analysis-alert-test-suites-as-a-source-of-training-data-for-alert-classifiers.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=526030
https://wiki.sei.cmu.edu/confluence/display/c/CERT+manifest+files
https://wiki.sei.cmu.edu/confluence/display/c/How+this+Coding+Standard+is+Organized#HowthisCodingStandardisOrganized-RelatedGuidelines
https://wiki.sei.cmu.edu/confluence/display/c/How+this+Coding+Standard+is+Organized#HowthisCodingStandardisOrganized-CERT-CWEMappingNotes

33Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY19 Releases: Software and YAML API Definitions
• More recent versions available
• Notable: Multiple releases for collaborator feedback throughout

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

34Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY19: Select Non-Code Publications –1
Publications to Explain Research and Development Methods and Results

• SEI blog post: An Application Programming Interface for Classifying and Prioritizing
Static Analysis Alerts by Lori Flynn and Ebonie McNeil (July 2019)

• SEI whitepaper: SCAIFE API Definition Beta Version 0.0.2 for Developers by Lori Flynn
and Ebonie McNeil (June 2019)

• SEI technical report: Integration of Automated Static Analysis Alert Classification and
Prioritization with Auditing Tools: Special Focus on SCALe by Lori Flynn, Ebonie
McNeil, David Svoboda, Derek Leung, Zach Kurtz, and Jiyeon Lee (May 2019)

• SEI blog post: SCALe v3: Automated Classification and Advanced Prioritization of
Static Analysis Alerts by Lori Flynn and Ebonie McNeil (December 2018)

• Presentation: Automating Static Analysis Alert Handling with Machine Learning: 2016-
2018 (one-hour presentation at Raytheon's CyberSecurity Technical Interchange
Meeting) by Lori Flynn (October 2018)

These resources remain useful

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://insights.sei.cmu.edu/sei_blog/2019/07/an-application-programming-interface-for-classifying-and-prioritizing-static-analysis-alerts.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=549351
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=546157
https://insights.sei.cmu.edu/sei_blog/2018/12/scale-v-3-automated-classification-and-advanced-prioritization-of-static-analysis-alerts.html

35Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY19: Select Non-Code Publications –2

Publications to Demonstrate New Features of SCALe and SCAIFE

• Manual: How to Review & Test the Beta SCAIFE VM by L. Flynn and E. McNeil (v1
August 2019, v2 September 2019)

• SEI Cyber Minute by Ebonie McNeil (August 2019)

• SEI webinar: How can I use new features in CERT’s SCALe tool to improve how my
team audits static analysis alerts? (video and slides) by Lori Flynn (November 2018)

• Presentation: Introduction to Source Code Analysis Laboratory (SCALe) (one-hour
presentation, including demo at Software Assurance Conference [SwACon]) by Lori
Flynn (November 2018)

These resources remain useful

Goal: Enable practical automated classification so all meta-alerts can be addressed.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=553187
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538843
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=532194

36Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification:
Line-Funded Research FY16-20

FY20 Research Topic Detail
and Artifacts

37Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

CI
Workflow

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Goal: Enable practical automated classification for
more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

38Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

CI
Workflow

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Goal: Enable practical automated classification for
more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

39Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

CI
Workflow

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Goal: Enable practical automated classification for
more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

40Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

CI
Workflow

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Goal: Enable practical automated classification for
more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

41Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Source Code
Repository

CI Server

Development
& Test Teams

Source Code
Check-In

Rapid Adjudication of Static Analysis
Meta-Alerts During CI

SA alert
SA alert
SA alert
SA alert

CI
Workflow

SA alert
SA alert

SA alert
SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

SA alert
SA alert
SA alert
SA alert

Goal: Enable practical automated classification for
more secure software and lower cost/effort.

Compile
Build
Project

Build
Install
Deploy

Run Static
Analysis

More
Automated

Tests

Report the
Results

CI
Server

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

42Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

CWE-190

CWE-119

CWE-398

CWE-758

Code v1
Code v2

Precisely Cascading Adjudications from Previous Code Versions
1. Develop a new static analysis method that matches flaws in different versions of

Java or C++ code.
2. Test programs for correctness. Test on open source codebases, then compare to

diff, cascading to measure improvement.
Challenges

• Templates in C++
• Polymorphism and exception handling must be handled for C++ and Java
• Algorithm must be fast to work in CI system

Goal: Enable practical automated classification for more secure software and lower cost/effort.

CWE-190

CWE-128

CWE-119

CWE-398

CWE-910

CWE-908

Tool X alertConditions,
diff Cascaded FPs

Tool X alertConditions,
Precisely Cascaded FPs

CWE-190

CWE-398

CWE-128

CWE-119

CWE-398

CWE-910

CWE-908

Tool X alertConditions
(Adjudicated FP)

OR

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

43Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20: Select Code/API Artifacts

Goal: Enable practical automated classification for more secure software and lower cost/effort.

• DoD can get full implementation
• SCALe + SCAIFE API publicly-published (Sept 2020 versions)
• Significant CI integration; to be completed in FY21

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

44Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Select Artifacts (New Detail or Item) –1

• (Oct 2019 and Feb, Apr, and Sep 2020) GitHub publication of SCAIFE API
versions https://github.com/cmu-sei/SCAIFE-API

• (Apr 2020) Published the open dataset “RC_Data” for classifier research to the SEI
CERT Secure Coding webpage “Open Dataset RC_Data for Classifier Research”;
database with static analysis alerts from open-source tools, adjudications, code
metrics, and more for two codebases

• (Jun 2020) Presentation “Automated Classifiers to Adjudicate Static Analysis Alerts:
Challenges, Progress, and Next Steps” (Lori Flynn, Stephen Adams, and Tim
Sherburne) to DoD’s DEVCOM Cyber Community of Interest

• (Jun 2020) Presentation “Automated Classifiers to Adjudicate Static Analysis Alerts:
Challenges, Progress, and Potential Collaborations with NASA IV&V” (L. Flynn) to
leaders of the NASA IV&V Static Code Analysis Working Group (SCAWG)

Goal: Enable practical automated classification for more secure software and lower
cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://github.com/cmu-sei/SCAIFE-API
https://wiki.sei.cmu.edu/confluence/display/seccode/Open+Dataset+RC_Data+for+Classifier+Research

45Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Select Artifacts (New Detail or Item) –2
• (Jul 2020) Technical manual “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE

Code, the SCAIFE API, Swagger-Editor, and Developing Your Tool with Auto-
Generated Code” (L. Flynn, E. McNeil, and J. Yankel) Instructions for three types of
SCAIFE System code access: (1) none, (2) access to SCALe code, or (3) full access

• (Jul 2020) Auto-generated Java client code for the five SCAIFE API modules for a DoD
collaborator, to help them quickly start to instantiate SCAIFE API calls from their tool

• (Sep 2020) Blog post “Managing Static Analysis Alerts with Efficient Instantiation of the
SCAIFE API into Code and an Automatically Classifying System” by Lori Flynn

• (Sep 2020) Presentation “Using AI to Find Security Defects in Code / Build More
Secure Software” at the Defense Science & Technology Agency (DSTA) Workshop

• (Sep 2020) Presentation “Rapid Adjudication of Static Analysis Meta-Alerts During
Continuous Integration,” Software Assurance Community of Practice (SwA CoP)

• (Sep 2020) SCALe code at https://github.com/cmu-sei/SCALe/tree/scaife-scale
• (Sep 2020) Test data generated for ‘diff’ cascading, for precise cascading comparison

Goal: Enable practical automated classification for more secure software and lower
cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354
https://github.com/cmu-sei/SCALe/tree/scaife-scale
https://insights.sei.cmu.edu/author/lori-flynn/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=645757
https://github.com/cmu-sei/SCALe/tree/scaife-scale

46Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification Research FY16-20

Invitation to Collaborate

47Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

DoD Organizations That Do CI Development: Invitation to Test

I need DoD collaborators that do CI development to test our tooling:
• The current collaborators test but are not doing CI.
• The full system implementation release is currently limited to the DoD.
• CI testing does not have to include data sharing. (See the next slide.)
• If interested, please contact me at lflynn@cert.org.

Deployment and Testing Supported by Project
• release system containerized and with configuration files (ports, URLs, names)

to ease integration in wide variety of systems
• comes with extensive documentation (We expanded the documentation

significantly in the last year in response to collaborator feedback.)
• Part of the FY21 project is designed specifically to help collaborators use the

system.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

mailto:lflynn@cert.org

48Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Can You Help Us Get Labeled Data?
• We ask you to label data on particular open-source codebases.
• SCALe (scaife-scale branch) on GitHub can be used to do the adjudication

and store the results.
• Even better, the SEI can provide the full SCAIFE system (including SCALe +

classification, etc.) to DoD organizations.
• We provide auditing self-training support via published materials (next slide).
• You can use your own stored archives, providing that they are sanitized

before you share them.
High-quality manually labeled data will help us improve our DoD sponsored
classification research.
If our research succeeds, the improved classification techniques and data will
help your organization (1) secure its code and (2) save money.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://github.com/cmu-sei/SCALe/tree/scaife-scale

49Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Self-Training Resources for Auditing Meta-Alerts
• Paper “Static Analysis Alert Audits: Lexicon & Rules” (D. Svoboda, L. Flynn, W. Snavely) IEEE SecDev
• Presentation “Hands-On Tutorial: Auditing Static Analysis Alerts Using a Lexicon and Rules” (L. Flynn, D. Svoboda,

W. Snavely) https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=505451
• Webcast (1 hour video, hands-on SCALe use): “Improve Your Static Analysis Audits Using CERT SCALe’s New

Features” by L. Flynn. (The SCAIFE System includes the SCALe tool, as a separable part of SCAIFE.)
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538843 (video) and
https://resources.sei.cmu.edu/asset_files/Presentation/2018_017_101_532198.pdf (slides)

• Video “Rapid Construction of Accurate Automatic Alert Handling System” Nov. 2019 https://youtu.be/dwYbhgko3to
• Slides “Rapid Construction of Accurate Automatic Alert Handling System” Nov. 2019

https://resources.sei.cmu.edu/asset_files/Presentation/2019_017_001_635435.pdf

Increase the quality of your data by studying the definitions of the code flaw types ("conditions") that you will inspect
static analysis meta-alerts for (as defined in a formal code flaw taxonomy).

Currently, for this classification research, the following taxonomies are of the most interest:
- MITRE CWE https://cwe.mitre.org/data/index.html
- CERT coding rules for C: https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
- CERT coding rules for Java:
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
- CERT coding rules for C++: https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682

The SCALe (scaife-scale branch) GitHub release includes a SCAIFE/SCALe HTML manual with extensive information
about how to use the SCAIFE and SCALe systems to adjudicate static analysis meta-alerts.

Goal: Enable practical automated classification for more secure software and lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484185
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=505451
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538843
https://resources.sei.cmu.edu/asset_files/Presentation/2018_017_101_532198.pdf
https://youtu.be/dwYbhgko3to
https://resources.sei.cmu.edu/asset_files/Presentation/2019_017_001_635435.pdf
https://cwe.mitre.org/data/index.html
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://github.com/cmu-sei/SCALe/tree/scaife-scale
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538843
https://resources.sei.cmu.edu/asset_files/Presentation/2018_017_101_532198.pdf

50Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification:
Line-Funded Research FY16-20

Impacts

51Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

NEAR MID FAR

The public can use/review
the SCAIFE API and
SCALe* module.

DoD collaborators will
further test SCAIFE to
• provide data and

feedback
• integrate their tools

using the API

The FY20-21 research
project incorporates
continuous integration (CI)
into architecture design.

More collaborators (DoD
and non-DoD) will test
SCAIFE with CI.
Design improvements for
transition include
• classification precision
• latencies
• bandwidth/disk/memory

use
• business continuity
• scalability

A wide variety of systems
will do automated meta-
alert classification, using
• SCAIFE System
• SCAIFE API
Goal: Provide better
software security or
require less time and cost
for the same security
(DoD and non-DoD).

Project Impacts Time Frame

* Version of SCALe used in SCAIFE System implementation

Goal: Enable practical automated classification for more secure software and
lower cost/effort.

Enable classifier use
via modular architecture

Improve classifier
precision & recall

Data quality

Wide variety
of labeled data

Enable classifier
use in CI systems

52Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020Research Review 2020

Static Analysis Classification:
Line-Funded Research FY16-20

Combining SA Classification
and Automated Code Repair

53Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Automated Code Repair (ACR) & Meta-Alert Classification
Source Code

Repaired Source Code

Split into 3 Categories (e-TP, e-FP, I) of Prioritized Meta-Alerts, Then
4th Category High-Priority e-TP with Automated Repairs

Meta-Alert Classification
(Run Static Analysis and Other Tools, Use Data Archives, Active Learning, etc.)

Automatic Code
Repair (Option 2)

Meta-Alert
Adjudicator

Manual
Code Repair
(Developer)

Ignore

Automatic Code
Repair (Option 1)

Feature Development
and Bug Fixes

One vertical flow could happen:

• during one continuous
integration build cycle (cycle
until the build passes, then
repeat each build)

• during a code security
analysis+fix

• ACR option 1: Make all possible
automatic repairs (worse
runtime overhead, better
safety).

• ACR option 2: Repair only
higher priority meta-alerts (less
runtime overhead, but might
leave unfixed vuls).

54Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Automated Code Repair (ACR), Semi-ACR, and Classification
Source Code

Repaired Source Code

Split into 3 categories (e-TP, e-FP, I) of prioritized meta-alerts, then
4th category high-priority e-TP with automated repairs

Meta-alert classification
(Run static analysis and other tools, use data archives, active learning, etc.)

Automatic Code
Repair (option 2)

Meta-alert
adjudicator

Manual
code repair
(developer)

Ignore

Feature development & bugfixes

Automatic Code
Repair (option 1)Combining such systems is a

concept we envisioned.
Research and testing are
required to develop a practical
integrated system.

One vertical flow could happen:

• during one continuous
integration build cycle (cycle
until the build passes, then
repeat each build)

• during a code security
analysis+fix

• ACR option 1: Make all possible
automatic repairs (worse
runtime overhead, better
safety).

• ACR option 2: Repair only
higher priority meta-alerts (less
runtime overhead, but might
leave unfixed vuls).

55Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

FY20 Project Team

Dr. Lori Flynn

Ebonie McNeil

David Svoboda

Matt Sisk

Hasan Yasar

Joseph Yankel

Shane Ficorilli

David Shepard

56Static Analysis Classification: Line-Funded Research FY16-20
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

For More Information

Contact Us
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu
Email: info@sei.cmu.edu

http://www.sei.cmu.edu/
http://www.sei.cmu.edu

	Static Analysis Classification: Line-Funded Research FY16-20�
	Static Analysis Classification: Line-Funded Research FY16-20
	Overview
	Five Years in Two Slides
	FY16-19 Static Analysis Meta-Alert Classification Research
	FY20 Static Analysis Meta-Alert Classification Research

	Data Quality: Audit Lexicon and Rules
	Meta-Alert Classifiers and Data Quality
	Data Quality: What Is Truth?
	Meta-Alert Classifiers and Data Quality
	Data Quality: Lexicon and Rules
	Lexicon: Audit Determinations
	Data Quality: Audit Rules

	Classifier Development, Data, & Enabling Architectures (Research Tooling Too)
	SEI SCALe Framework: Background
	Archive Sanitizer for Collaborator Data Sharing
	Data Used for Classifiers
	CERT-Audited Archives Characterization
	Analysis of Juliet Test Suite: Initial 2018 Results
	SCAIFE Definitions
	SCAIFE Architecture Approach
	SCAIFE Architecture

	FY18-19 Artifacts
	FY18 Software Artifacts
	FY18: Non-Code Publications
	FY19 Releases: Software and YAML API Definitions
	FY19: Select Non-Code Publications –1
	FY19: Select Non-Code Publications –2

	FY20 Research Topic Detail and Artifacts
	Rapid Adjudication of Static Analysis Meta-Alerts During CI
	Precisely Cascading Adjudications from Previous Code Versions
	FY20: Select Code/API Artifacts
	FY20 Select Artifacts (New Detail or Item) –1
	FY20 Select Artifacts (New Detail or Item) –2

	Invitation to Collaborate
	DoD Organizations That Do CI Development: Invitation to Test
	Can You Help Us Get Labeled Data?
	Self-Training Resources for Auditing Meta-Alerts

	Impacts
	Project Impacts Time Frame

	Combining SA Classification and Automated Code Repair
	Automated Code Repair (ACR) & Meta-Alert Classification
	Automated Code Repair (ACR), Semi-ACR, and Classification

	FY20 Project Team
	For More Information

