
1
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Automated Code Repair (ACR)
to Ensure Memory Safety

Will Klieber

2
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported

by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for

the operation of the Software Engineering Institute, a

federally funded research and development center.

The view, opinions, and/or findings contained in this

material are those of the author(s) and should not be

construed as an official Government position, policy, or

decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON

UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS"

BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT

LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE

OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO

FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use

and distribution.

This material may be reproduced in its entirety, without

modification, and freely distributed in written or electronic

form without requesting formal permission. Permission is

required for any other use. Requests for permission

should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University.

DM20-0912

3
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Automated Code Repair (ACR) for Memory Safety

Problem: Software vulnerabilities constitute a major threat to DoD.

• Spatial memory violations are among the most common and most

severe types of vulnerabilities.

- 15% of CVEs in the NIST NVD and 24% of critical-severity CVEs.

- iPhone iOS CVE-2019-7287 (exploited by Chinese government, according to
https://techcrunch.com/2019/08/31/china-google-iphone-uyghur/)

- Android Stagefright (2015)

- CloudBleed (2017)

• Huge volume of code is in use by DoD, with unknown number of

vulnerabilities.

https://techcrunch.com/2019/08/31/china-google-iphone-uyghur/

4
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Automated Code Repair (ACR) for Memory Safety

Solution: Automatically repair source code to assure spatial

memory safety.

• Abort program (or call error-handling routine) before memory

violation.

Approach:

• Transform source code to an intermediate representation (IR),

retaining mapping.

• Repair program to use fat pointers to track bounds and insert a

bounds check before memory accesses.

• Map the repairs at the IR level back to source code.

5
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Automated Code Repair (ACR) tool as a black box

Input: Buildable

codebase written in C

Output: Repaired

source code that is still

human-readable and

maintainable

printf(
name);

printf(
"%s",
name);

ACR Tool

Envisioned use of tool:

• Use before every release build

• Use occasionally for debugging builds

• Intended for ordinary developers

• Can be a tool in the DevOps toolchain (for new code)

• Can be used for legacy code

6
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Why repair at the source-code level?

Repair of source code Repair as a compiler pass

Easily audited (if desired). Must trust the tool.

Repairs can easily be tweaked to

improve performance, if necessary.

Difficult to remediate performance

issues caused by repair.

Changes to source code are frequent

and easily handled.

Changes to the build process may be

more difficult, more error-prone, and

create unwanted dependencies.

Okay to do slow, heavy-weight static

analysis; produces a persistent artifact.

Slowing down every build is not okay.

7
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Gap between static analysis and repair of source code

Static analysis

to detect bugs

works best on an

intermediate

representation (IR)

Repair

on original source

(before macro

preprocessing)

X
Gap

8
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Source Code Repair Pipeline

2. Record

AST↔IR

mapping

4. Map repaired IR

back to AST

Abstract
Syntax Tree

(AST)

Intermediate
Representation (IR)

Source
Code

1. Record

Source↔AST

mapping

5. Map repaired AST

back to source

map map

3. Perform analysis

and repair at IR level

9
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Fat pointers

We replace raw pointers with fat pointers:

• A fat pointer is a struct that includes the pointer itself as well as bounds information.

• Before dereferencing a fat pointer, a bounds check is performed.

• For each pointer type T*, we introduce a fat-pointer type defined as follows:

struct FatPtr_T {

T* rp; /* raw pointer */

char* base; /* of allocated memory region */

size_t size; /* of allocated memory region, in bytes */

};

Fattening of pointers has been performed as a compiler pass:

• Todd Austin et al. “Efficient detection of all pointer and array access errors.” PLDI, 1994.

• Wei Xu et al. “An efficient and backwards-compatible transformation to ensure memory safety of C

programs.” ACM SIGSOFT, 2004.

10
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Fat pointer example

h e l l o w o r l d \0

p
Original:

Repaired: p.rp
p.base

(p.base + p.size - 1)

11
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Example of tool output

Original Source Code Repaired Source Code
1 1 #include "fat_header.h"

2 2 #include "fat_stdlib.h"

3 #define BUF_SIZE 256 3 #define BUF_SIZE 256

4 char nondet_char(); 4 char nondet_char();

5 5

6 int main() { 6 int main() {

7 char* p = malloc(BUF_SIZE); 7 FatPtr_char p = fatmalloc_char(BUF_SIZE);

8 char c; 8 char c;

9 while ((c = nondet_char()) != 0) { 9 while ((c = nondet_char()) != 0) {

10 *p = c; 10 *bound_check(p) = c;

11 p = p + 1; 11 p = fatp_add(p, 1);

12 } 12 }

13 return 0; 13 return 0;

14 } 14 }

12
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Wrapper for memory allocation function

For each pointer type T*, we define a wrapper around malloc:

static inline FatPtr_T fatmalloc_T(size_t size) {

FatPtr_T ret;

ret.rp = malloc(size);

ret.base = (char*) ret.rp;

ret.size = size;

if (ret.rp == NULL) {ret.size = 0;}

return ret;

}

13
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Fat pointer arithmetic

Defined as a function for each type T :

static inline FatPtr_T fatp_add_T(FatPtr_T fp, ptrdiff_t i) {

FatPtr_T ret = fp;

ret.rp += i;

return ret;

}

Alternatively, defined as a single macro (using widely supported gcc/clang

extensions):

#define fatp_add(p_expr, i) \
({ typeof(p_expr) _p = (p_expr); \

_p.rp += i; \

_p; })

Can also be defined using C11 _Generic feature

14
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Fat pointer bounds checks

Defined as a function, for each type T :

static inline T* bound_check_T(FatPtr_T fp) {

if (!(fp.base <= (char*) fp.rp &&

(char*) fp.rp < fp.base + fp.size)) {abort();}

return ret.rp;

}

Alternatively, defined as a single macro (using widely supported gcc/clang

extensions):

#define bound_check(p_expr) \
({ typeof(p_expr) _p = (p_expr); \

if (!(_p.base <= (char*) _p.rp && \

(char*) _p.rp < _p.base + _p.size)) {abort();}; \

_p.rp; })

Can also be defined using C11 _Generic feature

15
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Results – SVCOMP benchmarks

We ran our tool on 52 memory-safety benchmarks in the SVCOMP

benchmark suite.

To verify the efficacy of our repairs, we ran Symbiotic (a software-

verification tool) on the original and repaired files:

Safe Unsafe Unknown

Original 0 48 4

Repaired 27 0 25

16
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Running time of bzip2 (original vs repaired) on 3 files

17
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Reducing runtime overhead

• Our overhead time was around 50% on bzip2.

- Our DoD collaboration partners said this is too high for many of their

use cases.

- Can we reduce it significantly while still proving memory safety?

• Probably not, but automated repair is valuable even if it fixes only the

likeliest bugs.

• To reduce the overhead time, we added an option to insert bounds

checks only for memory accesses that are warned about by an

external static analyzer.

- This reduced the overhead to 6% on bzip2.

18
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Limitations

We cannot guarantee memory safety in the presence of:

• Non-standard pointer tricks (e.g., XOR-linked lists)

• Reuse of memory for different types (except via unions)

• Concurrency

- Race conditions can cause memory corruption

• External code that accesses program memory

- If the program’s data structures are accessed by external binary code,

the pointers inside them cannot be fattened.

- We identify such pointers using a whole-program points-to analysis

with an allocation-site abstraction.

19
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Source Code Repair Pipeline

2. Record
AST↔IR
mapping

4. Map repaired IR
back to AST

Abstract
Syntax Tree

(AST)

Intermediate
Representation (IR)

Source
Code

1. Record
Source↔AST

mapping

5. Map repaired AST
back to source

map map

3. Perform analysis
and repair at IR level

20
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Abstract syntax tree (AST) ↔ source code

• We implemented a modification to Clang to extract a

Source ↔ AST mapping.

• In translating repairs from AST to source, the C preprocessor is

main difficulty.

- Repairs to macro uses

- Repairs to #included code

- Conditional-compilation directives (#ifdef, #endif, etc.) inside

expressions

• When an expression or statement is repaired:

- We generate new source code for the repaired portion of the AST.

- For unchanged portions of the AST, we re-use the existing source code.

21
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Multiple build configurations

The C preprocessor can conditionally include or exclude pieces of code

depending on the configuration chosen at compile time.

• By “configuration”, we mean the values assigned to the symbols used

in preprocessor directives such as #ifdef.

We repair configurations separately and then merge the results such

that the final repaired code is correct under all desired configurations.

• If a line of code is repaired differently for different configurations, then

each version is included, guarded by appropriate conditional

directives.

22
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Example merge for build configurations

Repaired Config 1:

void foo(

#ifdef USE_LONG

FatPtr_long x

#else

int* x

#endif

);

Repaired Config 2:

void foo(

#ifdef USE_LONG

long* x

#else

FatPtr_int x

#endif

);

Merged:

void foo(

#ifdef USE_LONG

FatPtr_long x

#else

FatPtr_int x

#endif

);

Original:

void foo(

#ifdef USE_LONG

long* x

#else

int* x

#endif

);

23
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Idempotence

Original
Source

Repaired

Repair

repair(repair(s)) =
?

repair(s)

and Defattening

Not yet.

But: (repair ∘ defatten) is idempotent.

Defattened

Defatten

Repair

Repair

?

24
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Project Team

Will Klieber Ryan Steele Matt Churilla

David Svoboda Mike McCall Ruben Martins (CMU SCS)

25
Title of the Presentation Goes Here
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2020

Conclusion

Our tool repairs codebases to ensure memory safety using fat pointers.

User can select one of two modes:

1. Make all possible automatic repairs (larger runtime overhead, e.g., 50%)

2. Only repair likely memory violations (significantly less runtime overhead)

We are happy to provide our tool to any interested parties.

• This is a research-grade tool, not a production-grade tool.

• Further development work to suit particular needs is possible.

In the long term and with further development, DoD can use this technology to ensure

memory safety as part of all software projects with code written in memory-unsafe

languages (such as C and C++).

Contact Will Klieber via info@sei.cmu.edu or https://www.sei.cmu.edu/contact-us/

Blog post: https://insights.sei.cmu.edu/sei_blog/2020/02/automated-code-repair-to-ensure-

memory-safety.html

