Carnegie Mellon University
Software Engineering Institute

RESEARCH
REVIEW
2020

Advancing Cyber Operator
Tradecraft through Automated
Static Binary Analysis

Cory Cohen & Dr. Edward Schwartz

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-1S" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-0906

Cilrlll“_"il‘ Mellon l'ni\'('rsilv Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
- - . y 2020 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

RESEARCH REVIEW 2020

Executable Code Analysis Team at CERT

-‘ Building tools to solve DoD program analysis challenges!
—‘ « Historically focused on malware reverse engineering (RE)
» Focused on software assurance & vulnerability discovery

Pharos is a static binary analysis framework that
» Extends the LLNL ROSE compiler infrastructure
(http://rosecompiler.org), DOE sensitive to DoD needs

Also working extensively in NSA's Ghidra RE platform

I h a ro S Tools are focused on making a difference in operational tradecraft
) » Analyzing malware design
ApiAnalyzer || CallAnalyzer | OOAnalyzer]) _
» Performing advanced static emulation

Pharos - Recovering data types
ROSE » Performing control flow analyses
 Defeating obfuscations

Calrn(‘;_"i('M(*"()nlfniv('rsilv Advancir _] Cyhe Ope ax r Tradecraft through Automated Static Binary Analysise [DISTRIBUTION STATEMENT A] Approved for public release and

- ' . 2020 Car n University unlimited distribution 3
Software Engineering Institute

http://rosecompiler.org/

The Pharos Static Binary Analysis Framework

Carnegie

Pharos includes

File format parsing
Disassembler

Function partitioner
Instruction semantics
Emulation framework
Usage-definition chains
XSB Prolog integration
Variable type analysis
API parameter database
Call parameter analysis

Mellon University

Software Engineering Institute

Built on top of ROSE

* Close partnership with LLNL
« Highly extensible

« BSD Licensed

« Implemented as C++ Library

Pharos Framework is
publicly available on GitHub at

https://github.com/cmu-sei/pharos

uuuuuuuuuuuuuuuuuuuuu

Analyst Tools Built in the Pharos Framework

- OO Analyzer
Cod

Detects object oriented constructs,
resolves virtual function calls

Impact: Greatly reduces the malware
analysis effort required for deep
understanding of malware capabilities

& FN2Hash
&2

Generates function hashes to identify
functions in malware files

Impact: Reduces analyst time spent doing
repetitive tasks, automates identification
of functions of interest in malware

Carnegie Mellon University
Software Engineering Institute

Q} Call Analyzer

Reports constant parameters to calls in
binary executables

Impact: Permits analyst to identify
parameters to important operating system
API calls to detect undesired behaviors in
software

Malware
Design Matcher

Detects high-level design abstractions in
malware files

Impact: Automated identification of key
abstractions in known families, permits
human analysts to record abstract
knowledge precisely

ﬂ FN2Yara

~
—
a—

Automatically generates
YARA signatures

Impact: Promotes high-quality signatures
to detect similarity in malware families,
which can be converted to Snort
signatures for use in network defense

(01;6, Api Analyzer
9}

Detects patterns of API calls representing
malicious behaviors

Impact: Focuses analyst attention on
important aspects of code via automated
analysis, detects unexpected patterns for
software assurance

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution

Agenda

Today we’re going to discuss three examples of how we’re advancing cyber
operator tradecraft through automated static binary analysis:

* Program Reachability for Vulnerability and Malware Analysis
* Recovering Meaningful Variable Names in Decompiled Code
* Improvements to Object-Oriented Construct Recovery Using OOAnalyzer

Program Reachability Variable Name Recovery OOAnalyzer

Early Research Fully Transitioned

RESEARCH
REVIEW
2020

Advancing Cyber Operator Tradecraft through Automated
Static Binary Analysis

Program Reachability for
Vulnerability and Malware
Analysis

Carnegie Mellon University

ngineering Institute

Problem: Highly skilled Department of Defense (DoD) malware and
vulnerability analysts currently spend significant amounts of time
manually coercing specific portions of executable code to run.

Solution: Automate the analysis of binary code, choosing program
Inputs that will trigger specific behavior to reduce the time that DoD
cyber personnel spend performing complex software analysis.

Approach: Use model checking technigues to identify these inputs
and generate a simplified executable free of complex and
convoluted dependencies that can be analyzed by existing code
analysis tools.

Carnegie Mellon University

Software Engineering Institute

RESEARCH REVIEW 2020

Path Finder Design Overview

cmp ecx, 76h Analyst
jge exit

\4
cmp ecx, 42h
jnz normal

Under what
conditions does the
malicious code

\ 4
call check execute?
cmp eax, 34h =—
jnz normal
\4
call malware)
Z3 SMT . Rewritten
\ Satisfiable: Executable
call normal <) ecx = 42h
' Constraint Always Runs
Prob| check() = 34h Cod
inc ecx rooiem ode
jmp loop
Calrnvgiv XI(‘"()II l'ni\(‘rsily ,Ad,\ﬁﬂ;,m?m(‘mu:: (l)‘y:‘eral‘m Tradecraft through Automated Static Binary Analysis Lzlﬂzsl;:l:m"s;‘/\mmtzm A] Approved for public release and

Software Engineering Institute

Evaluating Multiple Approaches/Implementations

Completely remove
or greatly simplify
functions that are not
important to improve
performance.

Analyze function
input and output
states to minimize
complexity for solver
while being as

accurate as possible.

Base analysis on
complete symbolic

behavior of
instructions to

increase accuracy.

Pharos Weakest Property Ghidra +
Function Precondition Directed Seahorn
Summaries Reachability

(PDR)

A more source-code
centric approach to
resolving the
problems presented
by our early PDR
attempts.

Scalability?

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimite d distribution

RESEARCH REVIEW 2020

Pharos Function Summaries

Na

Accuracy = Poor

1

Speed = Fair

Accuracy Speed

Represent functions using a simplified model of memory
and loops that reduces the complexity of the problem
sent to the SMT solver.

Very fast when it works correctly!

Limitations are becoming more obvious as we test more
complex cases and push the limits of the approach.

Memory is represented simply and efficiently (as a scalar map).

= * 2 Loops are unrolled, which is unable to prove some paths.
i | 2 [| Greatwhen itworks, but limitations are becoming more obvious now.

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimite d distribution.

11

RESEARCH REVIEW 2020

Weakest Precondition Approach (WP)

1

Accuracy = Fair

1

Use an intermediate representation (IR) based on
the full semantics of the instructions to model the
program accurately.

More accurate than Pharos function summary
approach and more stable performance than the
PDR approach.

But can this approach really beat PDR?

Speed = Fair
Accuracy Speed
A S Memory is represented precisely as a single large array.
- | Loops are unrolled, which is unable to prove some paths.
v | Efficient algorithm generates formulas that are linear in size.

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimite d distribution

12

RESEARCH REVIEW 2020

Property Directed Reachability Approach (PDR/IC3)

This PDR approach
* Is related to work from model checking
« Can reason correctly about loops
* Hasn't really been used on executables

Collaboration with Dr. Arie Gurfinkel
 University of Waterloo
« Expert in Z3 SMT & PDR
* Creator of SPACER PDR Engine

Dr. Arie Gurfinkel
University of Waterloo

We’'re improving support for bit vectors and arrays.

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
N . . . 2020 Carnegie Mellon University unlimited distribution. 13
Software Engineering Institute

RESEARCH REVIEW 2020

Property Directed Reachability Approach (PDR)

o

Accuracy = Good

PDR approach is clearly more capable.

However, the performance is highly variable.

It often gets stuck guessing the bits of a value.

It struggles with proving memory model properties.

N Details of SMT representation seem to matter a lot more
Speed = Poor than in other approaches.
Accuracy Speed

| ©~_ . | Memory is represented precisely as a single large array.

| /. | SPACER is able to reason about loops correctly but slowly.

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimite d distribution

14

RESEARCH REVIEW 2020

Ghidra & Seahorn Approach

1

Accuracy = Fair

1

Uses same SPACER based solve engine as PDR.

Ghidra decompiler used to lift program representation in
LLVM.

Seahorn (source code analysis) used to answer
reachability. This approach known to work fairly well.

Big Question: How accurate is the decompilation?

Speed = Fair
Accuracy Speed
b . | Each stack frame is represented as a separate memory array.
h | SPACER is able to reason about loops correctly but slowly.

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimite d distribution

15

RESEARCH REVIEW 2020

Overall Assessment of Approaches (Pass/Fail/Timeout)

Test Case Pharos Function Weakest Property Directed Ghidra/Seahorn
Configuration Summaries Precondition Reachability

Optimized | Arch | Fail Tout | Pass | Fail Tout | Pass | Fail | Tout | Pass | Falil Tout | Pass
None 32-bit | 55 2 34 16 2 73 3 29 59 21 7 63
None 64-bit | 47 0 44 15 3 73 2 36 53 28 2 61
Medium 32-bit | 40 0 51 9 3 79 1 13 77 12 7 72
Medium 64-bit | 53 0 38 9 4 78 1 17 73 21 6 64
High 32-bit | 50 0 41 6 2 83 1 12 78 18 7 66
High 64-bit | 32 1 58 28 3 60 2 16 73 32 5 54
Total 257 |3 266 | 83 17 446 | 10 123 | 413 132 34 380

There were 91 tests in each optimization/architecture configuration.
Red = Worst, Green = Best, Yellow = 2nd place, Gold = 3 place
Results are not intended to be definitive but to communicate our experience.

There’s no one solution that clearly wins!

Carnegie Mellon University Advancing C‘yh“er Symralm' Tradecraft through Automated Static Binary Analysise [DISTRIBUTION STATEMENT A] Approved for public release and
- negie Melion University

- . 2020 Carr of ersity unlimite d distribution. 16
Software Engineering Institute

Summary of Conclusions
Path reachability in binary executables continues to be a very hard problem!

Primary concern in each approach:
» Pharos FS: Not accurate enough.
» Weakest Precondition: Technically the winner, but has known deficiencies.
« SPACER: Timeouts caused by memory layout complexity a serious problem.
» Ghidra + Seahorn: Unclear if lifting can reach required correctness.

But, we have a good test set to continue to monitor the state of the art!

Perhaps dynamic approaches such as concolic execution deserve more attention?

Carneg‘ie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysisc [DISTRIBUTION STATEMENT A] Approved for public release and

020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

RESEARCH
REVIEW
2020

Advancing Cyber Operator Tradecraft through Automated
Static Binary Analysis

Recovering Meaningful
Variable Names in
Decompiled Code

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis DISTRIBUTION STATEMENT A] Approved for public release and
¢ v 020 Carnegie Mellon Universi unlimited distribution.

ngineering Institute

RESEARCH REVIEW 2020

Disassembler

40299c:
40299e:
4029al:
4029a3:
4029a5:
4029a8:
4029ab:
4029b2:
4029b9:
4029bc:
4029be:
4029c0:
4029c4:
4029c6:
4029cd:
4029d0:
4029d2:
4029d4:
4029d7:

1. jlacomis@gs17931:~/Data/coreutils/debug/src (ssh)

be b8 20 00
ff ba 20 00

ff

a3 b8 20 00

%esi,%eax

$0x4 ,%eax

4029cO0 <main+0x8bO>
%edx ,%edx

%rbx,%rax

%rdi

%rax,0x20b8be (%rip)
%rdx,0x20baff (%rip)
%r8,%rs8

4029d2 <main+0Ox8c2>
4029f1 <main+0Ox8el>
Soxffffffffffffffff,%rbx
4029cd <main+0x8bd>
%rbx,0x20b8a3 (%rip)
%r8,%r8

4029f1 <main+Ox8el>
%ecx ,%eax
$0x10,%eax

4029f1 <main+Ox8el>

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and

2020 Carnegie Mellon University

unlimited distribution

19

RESEARCH REVIEW 2020

Disassembler

File Edit Jump Search View Debugger Options Windows Help
HEH e B85S 8 3 v @O

Library function [ll Regular function [l Instruction

X! IDA - dd /media/DATA/coreutils/debug/src/dd

of g @ FvF e X P O O Nodebugger
Il

~ |t E

%, Graph overview

% Output window

0@ ® | [5) IDA View-A

Data Unexplored

External symbol

The inltill‘lutolmlyli: has been finished.

Python
AU: idle Down

Disk: 406GB

(mJffr
! i '
I
edx, edx
rdi loc_402996:
cs:skip_records, rax cmp rbx, OFFFFFFFFFFFFFFFFh
cs:skip_bytes, rdx jz short loc_4029C0
rbx, OFFFFFFFFFFFFFFFFh
short loc_40299C
P I 3§ L
=
jmp short loc_4029C0

loc_40299C:

mov eax, esi

and eax, 4

jz short loc_4029C0

]
YYy]
FE
loc_4029C0:
cmp rbx, OFFFFFFFFFFFFFFFFh
jz short loc_4029CD
%I
100.00% (3B65,13067) |:T$“,3}I'Tnlﬂl:g_if 0000000000402996: main:loc_402996
0@

)

Carnegie Mellon University

Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©

2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

20

RESEARCH REVIEW 2020

Decompiler

usage (1) ;

ve = v7 + 1;
switch (__ROR1__ (*v6
{
case 0:
if (ve[1] 1= 111
goto LABEL_46;
if (ve[2] I= 110
goto LABEL_46;
if (v6[3] 1= 118
goto LABEL_46;
ve = ve[4];
if (v)

if (ve 1= 81)
goto LABEL_46;
}
conversions_mask |
goto LABEL_350;
case 3:
if (v6[1] 1= 102
goto LABEL_46;
vliz = ve[2];

if (viz == 108
vl3 = ve6[5];

{

if (vlz && vi2 1= 61)

if (1vi3 || vi3 == 61)

-9, 1))

= parse_symbols (v3, conversions, 0, "invalic

)

&& v6[3] == 97 && v6[4] == 103)

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©
2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

21

RESEARCH REVIEW 2020

Decompiler

usage (1) ;
}
vE = v7 + 1;
switeh (_ ROR1__ (*v&
{
case 0:
if { we[l] 1= 111
goto LABEL 46;
if (wa[Z] 1= 110
goto LABEL_46;
if { ve[3] 1= 118
goto LABEL_46;
ve = v5[4];
if [w3)
{
if (v3 1= 61)
goto LABEL_46;
}
conversions_mask |= parse_symbols (vE, conversions,
goto LABEL_320;
case 3:
if { we[l] 1= 102)
goto LABEL_46;
vlz = v6[2];
if (vlz && vl1Z 1= &1)
{

if (vi2 == 108 && vE[3] == 97 && v&[4] == 103)
{

vl3 = v6[3];
if (Iwl3 || vl == &1)
{

0, "inwvalig

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©
2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

22

The problem:

Decompilers are typically unable to assign
meaningful names to variables.

Carneg‘ie Mellon Un iversity Advancing Cyber Operator Tradecraft through Automated Static Binary Analysisc [DISTRIBUTION STATEMENT A] Approved for public release and

2020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

RESEARCH REVIEW 2020

Our Work

Decompiler output

void *file_mmap(int(::) int V2)
{
void *V3;
V3 = mmap(Q, V2, 1, 2,(::) 9);
if (V3 == (void *) -1) {
perror("mmap");
exit(1);
}

return V3;

— Recfactored decompiler output

void *file_mmap(int int size)
{
void *ret;
ret = mmap(Q, size, 1, 2, 9);
if (ret == (void) -1) {
perror("mmap");
exit(1);
}

return ret;

}

Carnegie Mellon University Ad
Software Engineering Institute

vancing Cyber Operator Tradecraft through Automated Static Binary Analysis®© [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University

..................... 24

RESEARCH REVIEW 2020

Our Work

Decompiler output

void +file mmap(int V1, int(::>
{
void *V3;
V3 = mmap(@,(::> 1, 2, Vi, 9);
if (V3 == (void *) -1) {
perror("mmap");
exit(1);
}

return V3;

— Recfactored decompiler output

void *file mmap(int fd, int
{
void *ret;
ret = mmap(@, 1, 2, fd, 9);
if (ret == (void) -1) {
perror("mmap");
exit(1);
}

return ret;

}

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University

lllllllllllllllllllll 25

RESEARCH REVIEW 2020

Our Work

Decompiler output

void +file mmap(int V1, int V2)

{
void @

mmap(@ V2, 1, 2, Vi, 0);
if == (void *) -1) {
perror("mmap");
exit(1);
}

r‘etur‘r@

}

— Recfactored decompiler output

void *file mmap(int fd, int size)

{
void kret
(EE£)= mmap (0, size, 1, 2, fd, 0);
if == (void *) -1) {
perror("mmap");
exit(1);

}

return

}

Carnegie Mellon University Advancing Cyber Oy
N ¥ 2020 Carnegie Mellon Un

Software Engineering Institute

perator Tradecraft through Autor
niversity

mated Static Binary Analysise [DISTRIBUTION STATEMENT A] Approved for public release and

..................... 26

Up to 74%

recovery of original source code names
on an open-source GitHub corpus

Carnegie Mellon Un iversity Advancing Cyber Operator Tradecraft through Automated Static Binary Analysisc [DISTRIBUTION STATEMENT A] Approved for public release and
© - 2020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

Why does it work?

RESEARCH REVIEW 2020

Natural Language

Tiger, Tiger
burning bright
In the forests

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysisc [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

RESEARCH REVIEW 2020

Natural Language

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysisc [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

RESEARCH REVIEW 2020

Key Principle: Software is “Natural”

Dept. of Computer Science

Davis, CA 95616 USA

Abram Hindle, Earl Barr, Zhendong Su

University of California at Davis

On the Naturalness of Software

Mark Gabel
Dept. of Computer Science
The University of Texas at Dallas
Richardson, TX 75080 USA

Prem Devanbu
Dept. of Computer Science
University of California at Davis
Davis, CA 95616 USA

{ajhindle,barr,su} @cs.ucdavis.edu

Abstract—Natural languages like English are rich, complex,
and powerful. The highly creative and graceful use of languages
like English and Tamil, by masters like Shakespeare and
Avvaiyar, can certainly delight and inspire. But in practice,
given cognitive constraints and the exigencies of daily life, most
human utterances are far simpler and much more repetitive
and predictable. In fact, these utterances can be very usefully
modeled using modern statistical methods. This fact has led
to the phenomenal success of statistical approaches to speech
recognition, natural language translation, question-answering,
and text mining and comprehension.

We begin with the conjecture that most software is also

natural, in the sense that it is created by humans at work,
auith _aoll _tho ottt d it trai and linitati and thuc

mark.gabel @ utdallas.edu

devanbu@ cs.ucdavis.edu

efforts in the 1960s. In the *70s and ’80s, the field was re-
animated with ideas from logic and formal semantics, which
still proved too cumbersome to perform practical tasks at
scale. Both these approaches essentially dealt with NLP from
first principles—addressing language, in all its rich theoretical
glory, rather than examining corpora of actual utterances, i.e.,
what people actually write or say. In the 1980s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple
languages,' along with the computational muscle (CPU speed,

d a " L " " Lk abadiok

(Presented at the 2012 International Conference on Software Engineering)
http://earlbarr.com/publications/naturalness.pdf

Carnegie Mellon University
Software Engineering Institute

2020 Carnegie Mellon University

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution

31

http://earlbarr.com/publications/naturalness.pdf

RESEARCH REVIEW 2020

Software Is really repetitive

Gabel & Su, 2010

Non-Unigueness (Redundancy) in a Large Java Corpus
100

90
80

70 iEEEEEEEEEEEEER

60
50
40
30
20
10

70% of sequences longer than 20
tokens have been written elsewhere.

Percent Redundancy

5 20 35 50 65 80
Length of Candidate Code Fragment in Tokens

Carncgi(‘,]\/l(-"()n Univ(‘rsi[v Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
- . ¥ 2020 Carnegie Mellon University unlimited distribution. 32
Software Engineering Institute

How can we use this?

EEEEEEEEEEEEEEEEEE

Learn typical variable names in a given context
from examples ... many, many examples.

If software Is repetitive, SO are names.

int main(int ? .,

C;lrn(‘(_"i(‘ XI(‘"()H l,‘ni“-rsi[v Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
- = . y 2020 Carnegie Mellon University "~ unlimited distribution 34
Software Engineering Institute

EEEEEEEEEEEEEEEEEE

Learn typical variable names in a given context
from examples ... many, many examples.

If software Is repetitive, SO are names.

int main(int banana,

C;lrn(‘g‘i(‘ XI(‘"()H l,‘ni“-rsi[v Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
- = . } y 2020 Carnegie Mellon University "~ unlimited distribution
Software Engineering Institute

35

EEEEEEEEEEEEEEEEEE

Learn typical variable names in a given context
from examples ... many, many examples.

If software Is repetitive, SO are names.

int main(int argc,

C;lrn(‘g‘i(‘ XI(‘"()H l,‘ni“-rsi[v Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
- = . y 2020 Carnegie Mellon University "~ unlimited distribution
Software Engineering Institute

36

Good news:

We can generate arbitrarily many examples.

GitHub github + Compiler/Decompiler tools

Source code with = | Decompiler output with
meaningful names placeholder names

C;lrn(‘(_"i(‘ XI(‘"()H l,‘ni“-rsi[v Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A]] Approved for public release and
- = . y 2020 Carnegie Mellon University "~ unlimited distribution
Software Engineering Institute

37

EEEEEEEEEEEEEEEEEE

Github Dataset

*164,632 unique x86-64 binaries
1,259,935 decompiled functions

*Split by binary into test, training, and validation

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
- ° . y 2020 Carnegie Mellon University ~—— unlimited distribution
Software Engineering Institute

38

RESEARCH REVIEW 2020

Neural Network Overview

Lexical Encoder (LSTM) Code Element

Representations

Sequential Decoder with
Attention

|dentifier

Representations
Structural Encoder (GGNN)

Carnegie Mellon Universitv Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
. . . 2020 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

How good are the renamings?

RESEARCH REVIEW 2020

Assumption:
Original (human-written) names are good.

How many can we recover?

Cilrlll“_"i(‘ Mellon l'ni\'('rsilv Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
t J

~ . 2020 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

41

RESEARCH REVIEW 2020

The Amount of Training Data Matters

100% -
—eo— Qverall

80%-
4%

60% -

40% 1

Accuracy

20% -

0% +— - :
1% 10% 100%

Size of Training Set

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution. 42

Carnegie Mellon University
Software Engineering Institute

RESEARCH REVIEW 2020

The Uniqueness of Data Matters

100% 1

80% 1

Accuracy

20% -

60% 1

40% A

—eo— Qverall

--®- Body in Train
—4- Body not in Train -

~—-—"

.
o*
¥ |
"

-
-®
-

-
—

—
——4—

0%

1%

10%
Size of Training Set

100%

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©
2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

43

Example

1| file *f_open(char **vi1, char *v2, int V3) {

int fd;

if (1V3) Developer
return fopen(*V1,);

if (*v2 1= 119) Vi | filename
assert_fail("fopen");

fd = open(*V1l, 577, 384);

if (fd >= @) el mode
return reopen(fd,);

else V3 | is_private
return 0;

Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
el . J unlimites d distribution.

Software Engineering Institute

Example

1| file *f_open(char **vi1, char *v2, int V3) {

int fd;
if (! ’) Developer | Recovered

return fopen(*V1,);

if (*v2 1= }19) vi | filename filename
assert _fail("fopen");

fd = open(*V1l, 577, 384);
if (fd >= 0) V2 | mode mode

return reopen(fd,)

else
return 0;

V3 | is_private | create

Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
¢ v unlimited distribution.

Software Engineering Institute

RESEARCH REVIEW 2020

Transitioning from Research to Practice

Research was a proof of concept
* Python command line tools that are difficult to use
* Now implemented as a Hex-Rays Plugin for easy use

C;lr"pgip Mellon lfni“-rsi[y A(J\Ga(lwcmg (‘:;{I)‘;::r S;mralm Tradecraft through Automated Static Binary Analysise
~ - . Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution

46

RESEARCH REVIEW 2020

Transitioning from Research to Practice

HINSTANCE result;
HMODULE v1; // esi

LSTATUS (__stdeall *theEnv) (HKEY, LECWSTR, LPDWORD, LPDWORD, LPBYTE, LPDWORD);
LSTATUS (__stdeall *theEn) (HKEY); // edi

LSTATUS theReturn; // cbx

unsigned int index; // eax

int theModel; // [esp+0h] [ebp-21Ch] BYREF

HINSTANCE v7; // [espt4h] [ebp-218h]

HKEY theEnvP; // [esp+3h] [ebp-214h] BYREF

unsigned int theWidth; // [espiCh] [ebp-210h] BYREF

WCHAR thaMsdula(260]; // [sp+lOn] (abp-20Ch] BYREE

1t ebx

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©
2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

a7

RESEARCH REVIEW 2020

Transitioning from Research to Practice

HINSTANCE result; [/ eax

HMODULE wl; // esi

LSTATUS (__stdcall *theEnv) (HKEY, LPCWSTR, LPDWORD, LPDWORD, LPEYTE, LPDWORD); // ebx
LSTATUS (__stdcall *theEn) (HKEY); // edi

LSTATUS theReturn; // cbx

unsigned int index; // ecax

int theModel; // [esp+0h] [ebp-21Ch] BYREF
HINSTANCE v7; // [esp+4h] [ebp-218h]

HEEY theEnvP; // [esp+Bh] [ebp-214h] BYREF
unsigned int theWidth; // [esp+Ch] [ebp-210h] BYREF
WCHAR theModule[260]; // [Fsp+1ﬁh] [ebp-20Ch] BYREF

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysiso [DISTRIBUTION STATEMENT A] Approved for public release and
. . . 2020 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

Software is highly structured and predictable. We can
leverage this to recover meaningful variable names by
studying existing source code.

We can recover up to 74% of variable names.

The uniqueness of the data is very important.

Carnegie Mellon University

Software Engineering Institute

RESEARCH
REVIEW
2020

Advancing Cyber Operator Tradecraft through
Automated Static Binary Analysis

Improvements to Object-
Oriented Construct

Recovery Using OOAnalyzer

Problem: Object oriented programs have complicated
abstractions that are expensive and time consuming to

reverse engineer.

Approach: Combine a lightweight program analysis pass
with hand written rules in Prolog to automatically recover

high-level object oriented constructs.

Carnegie Mellon University

Software Engineering Institute

RESEARCH REVIEW 2020

Object Oriented Abstractions (What Are They?)

C++ Abstractions

Inherits From
P - P

Input C++ \ -

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution. 52

Software Engineering Institute

RESEARCH REVIEW 2020

OOAnalyzer Design Overview

Input C++ Pharos Framework Recovered Object Decompiled C++ Source
Executable OOAnalyzer Tool Oriented Abstractions Code Displayed in Ghidra
L C++ Abstractions

Shape
Inherits From virtual draw()
~ -+ virtual getArea()

Square SHTG)

irtual draw()) I
OOAnalyzer i R o cocned s

getLen

;;:},i::ﬁ:g sah - SquareHelper

‘o arealogic()
o
Composition
int calculated

C++ Component Prolog Reasoning Component

Pharos Fact Forward Hypothetical Consistency
Exporter Reasoning Reasoning Checking

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and

R . unlimited distribution.
Software Engineering Institute

2020 Carnegie Mellon Universi

RESEARCH REVIEW 2020

Why Prolog?

Important information is lost during compilation from source code to executable.
We must make educated guesses and then validate them to find solutions.
New Prolog approach works better than old procedural approach because

It allows us to backtrack when we make incorrect guesses.

* It expresses compiler behaviors as Prolog rules in a natural format.

Example facts exported to Prolog Example Prolog rules
+ Data and control flow * Only constructors and destructors can
» Calling convention and parameters update virtual function table pointers.

» Derived classes must be at least large as
their base classes.

Cilrll(“"i(‘ \Ivllon l'lli\(‘l'sil\' Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
- © . y 2020 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

54

RESEARCH REVIEW 2020

Fact Exporter

Uses conventional binary analysis to produce initial facts about the program
* Initial facts describe low-level program behaviors

Simple symbolic analysis
* intentionally favors scalability over accuracy
» does not use constraint solvers

* uses a simplified memory model
- (symbolic memory aliases if memory addresses are equal after simplification)

* is path sensitive up to a threshold

Sufficient because Prolog reasoning system can cope with mistakes

Carnegie Mellon University Advancing C‘yh“er ?neralm' Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
negie Melion University

~ . 2020 Carr o ersity unlimite d distribution. 55
Software Engineering Institute

Initial Facts

Initial facts describe low-level program behaviors and form the
basis upon which OOAnalyzer's reasoning system operates.

ObjPtrAllocation(l, F, P, S)

ObjPtrinvoke(l, F, P, M)
ObjPtrOffset(P,, O, P,)
MemberAccess(l, M, O, S)

ThisCallMethod(M, P)
NoCallsBefore(M)
ReturnsSelf(M)
UninitializedReads(M)
PossibleVFTableEntry(VFT, O, M)

Carnegie Mellon University

Software Engineering Institute

Instruction | in function F allocates S bytes of memory for the object
pointed to by P.

Instruction | in function F calls method M on the object pointed to by P.
Object pointer P, points to P, + O.

Instruction | in method M accesses S bytes of memory at offset O from
the current object's pointer.

Method M receives the object pointed to by P in the ecx register.

No methods are called on any object pointer before method M.
Method M returns the object pointer that was passed as a parameter.
Method M reads memory that was not written to by M.

Method M may be at offset O in vftable VFT.

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimite d distribution

Entity Facts

Entity facts are produced during the reasoning process and
describe the high-level model of the program being analyzed.

FactName ________lpescipton

Method(M) Method M is an OO method on a class or struct.

Constructor(M) Method M is an object constructor.

Destructor(M) Method M is an object destructor.

Cl, = Cl, The sets of methods Cl, and Cl,, both represent methods from the
same class. These sets should be combined into a single class.

Cl, = Cl, Either the sets of methods Cl, and ClI, both represent methods from the
same class or the methods in Cl, are inherited from CI..

M e Cl Method M is defined directly on class Cl.

ClassCallsMethod(Cl, M) An instance of class Cl calls method M.

Other categories include virtual functions, class relationships, and sizes of classes and tables.

Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
(el . SN unlimited distribution.

Software Engineering Institute

RESEARCH REVIEW 2020

Reasoning Rules

P P»

Py

Forward reasoning
« Unambiguous scenarios

* Interpretation: If P, P,, ..., and P,
are satisfied, then C is true

* If inconsistency is reached, P,, P,,
..., Or P, must not be true

Hypothetical reasoning
» Ambiguous scenarios

* Interpretation: If P, P,, ..., and P, are
satisfied, then guess C is true

* If inconsistency is reached, then retract C
and assume =C

* If inconsistency is still reached, P, P,, ...
or P,, must not be true

Carnegie Mellon University Advancir
N - . ¢ 2020 Carnegie Mellon University
Software Engineering Institute

unlimited distribution

ng Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and 58

RESEARCH REVIEW 2020

Forward Reasoning

Constructor(My) M, € Cly
Constructor(Mp) My € Clp,
ClassCallsMethod(Cl ;, M)
ClassCallsMethod(Cly, M) Mg # My
M e Cl;y, Clg # Cly DerivedClass(Cl 4, Clp, _)

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
. . . 2020 Carnegie Mellon University unlimited distribution. 59
Software Engineering Institute

RESEARCH REVIEW 2020

Hypothetical Reasoning

ClassCallsMethod(Cl ;, M) —ClassCallsMethod(Cl;, M)
M e CI DerivedClass(Cl , Clp,)

Cl,; = Cl

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
. X . 2020 Carnegie Mellon University unlimited distribution. 60
Software Engineering Institute

RESEARCH REVIEW 2020

OOAnalyzer is the State of the Art in Research

* Unique Prolog-based design
- Allows human subject knowledge to be easily encoded
- Back-tracking allows for hypothetical reasoning of

prnnnrfino that ~nrannnt ha Aafinitalhs rar~vinarad

* Ta

» Recovers 67-84% of class abstractions correctly
- Existing work recovers <50% of class abstractions correctly

Using Logic Programming to Recover C++ Classes
and Methods from Compiled Executables

Edward J. Schwartz Cory F. Cohen

Michael Duggan

Carnegie Mellon University Carnegie Mellon University Carmegie Mellon University
Software Engineering Institute Software Engineering Institute Software Engineering Institute
eschwartz@cert org cfe@cert.org mwd@cert org
Jeffrey Gennari Jeffrey S. Havrilla Charles Hines
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Software Engineering Institute Software Engineering Institute Software Engineering Institute
jsg@certorg jsh@cert org hines@cert org

s it the state of the art in practice?

KEYWOKDS
software reverse engineering: binary snalysis; malware analysis
ACM Reference Format:

Edwand] Schwastz, Cory F. Coben, Michael Duggan, Jeffrey Gennari, Jeffrey
S. Havrila, and Charles Hines. 2015, Using Logie Programming to Recover

iled Exscutables _In 2018 ACMSIGSAC
cations Security (CCS “18). October
L, New Yok, NY, USA, 16 pages.

ware, modern software con-
ind shows no sign of slowing.
ity, software engineers have
amming languages, such as
swark of high-level abstrac-
nplex applications. The 00
phisticated, user-created data
I related data (members) and
organization of related data
pers to manage C++ source

Co+ allows programmers to
spiitof enabling specd and
surprise that vulncrabiliics
drcnce, s developers race 1o
Lissin « potentially insecure
authors are increasingly writ-
Duqu. Stuxnet, and Flamer)

s well
blems i the factthat the bigh-
R e lost durog the complatior,
PEing Crs exscitables ifhcalt ot han
analysts and automated algorithms like. Forexample, an lgorithm
scarching for use-gfterree vulncrabiltics requires knowlcdge of
abject constructors [7), and an analyst atiempting to understand &
malwase sample’s behavior would greatly benefit from knowiogg
which methods are on related classes [9). Rescarchers have also

r— T

many exploit protects

st Co+ abstractions, and that the level of protection and efficiency
for y ofthe ¢ - For cxample, re-
o the Acu i : <
it be b by A searchersin exceutable-level controbflow integrity (CFI protection

e Raques permisions from permissons@acmors.

oo/ 1011 /3273243753

systems [1,35] have recently shown that the overall level of protec-
tion against exploits can be signifieantly improved by incorporating
knowledge of Co+ abstractions (8, 19, 21, 34]. Although there are
existing systems that can recover C++ abstractions from executa-
blcs, most of them rely on vistual function tables (vftables) as their

ACM CCS 2018

Carnegie Mellon University Advanc

Software Engineering Institute

ing Cyber Operator Tradecraft through Automated Static Binary Analysis
egie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution

61

RESEARCH REVIEW 2020

OOAnalyzer Scales Well...

25

20

Minutes
=
(0]

[EEY
o

200 300 400 500 600
Number of Methods

700 800

900

1000

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©

2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

62

RESEARCH REVIEW 2020

OOAnalyzer Scales Well... Until It Doesn't

5
mysqgl.exe
4
-
-
-
] [
-
-
3 -
v .
=]
(=) u
I .
2 :
. °
-
-
-
-
1 = °
[}
° []
[] [}
0 oo oesoom ®oo ® e
0 500 1000 1500 2000 2500 3000
Number of Methods
Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and

2020 Carnegie Mellon University

Software Engineering Institute

unlimited distribution.

63

RESEARCH REVIEW 2020 E
OOAnalyzer Scales Well... Until It Doesn't
3.0 -
mysqgld.exe
mysql.exe 5
2.5 . ;
L
. -
2.0 . .
L []
. -
(7,] .. :
% 1.5 . =
D .. :
o n
.. []
1.0 s :
DoD needs solutions here. .
0.5 .: -
N .
Poo .
0.0 -J‘ .
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Methods
Carnegie Mellon University ?Odz\(ljacna(r:r‘wggwec'&ijggw Sﬁser'a;ﬁ Tradecraft through Automated Static Binary Analysiso IDISTRIBUTION STATEMENT] Approved for pubicrelease and 64

Software Engineering Institute

RESEARCH REVIEW 2020

OOAnalyzer on mysgld.exe

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

6 8 10 12
Days

OOAnalyzer has not made
any progress in 10 days.

14 16

18

20

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©

2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

65

OOAnalyzer was too slow to be
used on the programs that the
DoD needs it for the most.

Carneg‘ie Mellon Un iversity Advancing Cyber Operator Tradecraft through Automated Static Binary Analysisc [DISTRIBUTION STATEMENT A] Approved for public release and

2020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

RESEARCH REVIEW 2020

Improving Performance

OOAnalyzer relies on incremental tabling
* Memoization for Prolog
- If P=»Q and P does not change, Q will not change
» Dramatically speeds up performance
* OOAnalyzer originally used XSB Prolog
- Robust, mature tabling support

We worked with developers of XSB Prolog to add tabling support to SWI Prolog
» With OOAnalyzer as a test case ©

SWI Prolog advantages
» Substantially faster than XSB
* Provides invaluable debugging and profiling tools

Carnegie Mellon University {A;{Yja(p«;mg C‘yh“er ?neralm' Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University

. .Y 2020cCaregie Mellon University ~ unlimited distribution
Software Engineering Institute

67

RESEARCH REVIEW 2020

SWI Profiling: Resource Timeline

M n Sample rate: 1min @~
1T
Series B Pharos ifacts
H Pharos #guesses
Pharos #facts 100 G B Pharos #reasoningForward steps
Total stack
Pharos #guesses B Total stack usage
70 Process CPU

Pharos #reasoningForward ste 106G Table space
O clobal stack
0 1G d . -

Trail stack

| guessClassHasNoBase |
O Local stack | I ‘
100 M guessNOTMergeClasses

Total stack usage
O Thread CPU guessConstructor
oM guessRealDestructor
0 atoms guessDeletingDestructor |—
O 1M T

Functors /_,—J_’_'i guessMethod

et 100 K guessDerivedClass
O

guessVBTable

D -
O : 10K guessVFTable

Memory for VM code
[Tahles guessVirtualFunctionCall | p

ables 1K ; .
[Initial reasoning complete |
([100] concludeTrigger
0 - . =

Malloc lost Initial reasoning
O .

104" oading data
1
Carnegie Mellon Un iVGl‘Sily Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution. 68

Software Engineering Institute

RESEARCH REVIEW 2020

SWI Detailed Profiling

solve_internal/0

reasonForwardAsManyTimesAsPossible/0
reasonForward/0

(%]

63

reasonNOTMergeClasses J/2)

reasonNOTMergeClasses_G/
!
<0

=

$tabling:create_table
[1]
S
Stabling:run_leader/5
(%]

‘h"y -'| ;/
$tbl_variant table/6
w

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysiso [DISTRIBUTION STATEMENT A] Approved for public release and
. . . 2020 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

RESEARCH REVIEW 2020

SWI Detailed Profiling

reasonNOTMergeClasses_new/2

reasonNOTMergeClasses_C/2

363

9,317

reasonNOTMergeClassegf/ P/2

‘Stablin}

reasonNOTMergeClasses_F/2)

63 B63

$tabling:start_tabling_2/6
91.5%

98 /363 6 \363 45™_363

363

reasonNOTMergeClasses_J/2

363 363

363 63

reasonNOTMergeClasses_Q/2

nNOTMergeClasses_L/2,

reasonNOTMergeClasses_K/2|

AN

ader/S $tbl it_table/6

0%

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©
2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Fixing Performance Bottlenecks

Some performance problems were caused by simple mistakes.
Some can be fixed by reordering clauses.

But we also discovered a systemic problem:

 Rules do not need to be recomputed if no dependent fact changes. ©

« Entire rule needs to be recomputed when a dependent fact changes. ®
- Some rules are expensive (n?) to recompute.

- More facts to consider = More time
- Becomes slower over time

Insight: Most rules in OOAnalyzer are monotonic.
* They only need to be recomputed for "new" facts.
* Inspired development of monotonic tabling in SWI Prolog

Calrnvgiv Mellon l'ni\'('rsily Advap«;mg C‘yfi}‘er ?neralm Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and
negie Mellon University

~ . 2020 Carr unlimited distribution.
Software Engineering Institute

71

RESEARCH REVIEW 2020

Before and After

5
4
o
[]

3
(7]
S
=]
o
= °

2

[]
1 °
[]
° []
[] []
) oo eocsoem ®eo »® °
0 500 1000 1500 2000 2500 3000
Number of Methods
Carnegie Mellon Un iversi[y Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution. 72

Software Engineering Institute

RESEARCH REVIEW 2020

Before and After

5 . .
e Time (old) e Time (new)
4
o
[]

3
(7]
S
=]
2 .

2

[]
1 °
[]
° []
[] [] ° ® PY
0 eeo eoecsoemB8eoe® ' o e o o o
0 500 1000 1500 2000 2500 3000
Number of Methods
Carnegie Mellon Un iversi[y Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution. 73

Software Engineering Institute

RESEARCH REVIEW 2020 E
Before And After ;
3.0 :
mysqgld.exe
mysql.exe 5
2.5 : E
o]
.. :
2.0 . .
. -
L] []
L []
[R]
& 1.5 3 :
o K .
y -
N
o -
1.0 s :
DoD needs solutions here. :
L] []
0.5 . .
N .
" .
o []
0.0 -J“ :
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Methods
(jarncgic Mellon [?rliv(‘l‘sily ?Odzxéacnac’gr;g‘ecwy‘:& Sﬁserzl‘gr Tradecraft through Automated Static Binary Analysis© H?‘Iﬂg(?g;f&f;fmwm A] Approved for public release and 74

Software Engineering Institute

RESEARCH REVIEW 2020 E
Before And After ;
3.0 -
mysqgld.exe
mysql.exe 5
2.5 . E
o -
~
. .
2.0 - .
. .
) M
N .
(7 L4 []
® 1.5 N
5 : O
. -
»
o .
1.0 . .
) M
) M
. .
) M
0.5 . .
: .
Boo :
0.0 -J‘ o .
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Methods
Carnegie Mellon University ?gz\éacnac"wgg‘ecdgi; Sgserit‘gr Tradecraft through Automated Static Binary Analysis® IDISTRIUTION STATEMENT A] Approved orpublc reease and 75

Software Engineering Institute

RESEARCH REVIEW 2020

Before and After on mysqgld.exe

100.00%

90.00%

80.00%

70.00%

60.00%
—XSB%
50.00%
40.00%
30.00%
20.00%

10.00%

0.00%

6 8 10 12
Days

XSB has not made any
progress in 10 days.

14 16

18

20

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©

2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

76

RESEARCH REVIEW 2020

Before and After on mysqgld.exe

100.00%

90.00% SWI finishes after

£0.00% 33 hours.

70.00%

60.00%
—XSB% —SWI1%
50.00%
40.00% XSB has not made any

30.00% progress in 10 days.

20.00%
10.00%
0.00%
0 2 4 6 8 10 12 14 16 18
Days
Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and

2020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

Program Reachability Variable Name Recovery OOAnalyzer

Early Research Fully Transitioned

2,184 test configurations We can exactly predict OOAnalyzer was too slow
found several successful 74.3% of variable names to be used on the

approaches, but none in decompiled executable programs that the DoD
that consistently code by training a neural needs it for the most.
outperformed the others, network on a large corpus It is now 50x faster and
suggesting that a hybrid of C source code from can analyze large

approach is needed. GitHub. programs.

(jurnvgiq- Mellon l'ni\'(-rsi[.\' rac h Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and

unlimite d distribution

Institute

RESEARCH REVIEW 2020

Team Members

Cory Cohen Dr. Edward Schwartz

Carncgi(‘, Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
N . . . 2020 Carnegie Mellon University unlimited distribution. 79
Software Engineering Institute

END OF PRESENTATION

Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysisce [DISTRIBUTION STATEMENT A] Approved for public release and

2020 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

RESEARCH REVIEW 2020

Null Function Abstraction: Simplify!

Na

Accuracy = Poor

o

Speed = Good

Accuracy Speed

Key observation: Some functions don’t matter!

Replace those functions with null semantics or a greatly
simplified representation.

Why bog down the SMT solver with irrelevant constraints?

Irrelevant functions are removed entirely or simplified greatly.

This approach can be used in combination with other approaches.

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysise
Carnegie Mellon University unlimite d distribution.

2020 Carr

81

RESEARCH REVIEW 2020

OOAnalyzer is the State of the Art in Research

« Static
- Analyze program without executing it
- No need for test cases
-C ' ! '

" |s It the State of the Art in Practice?

» Recovers 67-84% of class abstractions correctly
- Existing work recovers <50% of class abstractions correctly

- Most existing work only attempts to recover virtual classes
(because they are easier)

Using Logic Programming to Recover C++ Classes
and Methods from Compiled Executables

Edward J. Schwartz Cory F. Cohen
Carnegie Mellon University
Software Engineering Institute

Carnegie Mellon University
Software Engineering Institute

Michael Duggan
Camnegie Mellon University
Software Engineering Institute

eschwartz@cert org cfe@cert.org mwd@cert org

Jeffrey Gennari Jeffrey S. Havrilla Charles Hines

Carnegie Mellon University
Software Engineering Institute

Carnegie Mellon University
Software Engineering Institute

Carnegie Mellon University
Software Engineering Institute

jsg@certorg jsh@cert org hines@cert org

KEYWOKDS
software reverse engineering: binary snalysis; malware analysis
ACM Reference Format:

Edwand] Schwastz, Cory F. Coben, Michael Duggan, Jeffrey Gennari, Jeffrey
S. Havrila, and Charles Hines. 2015, Using Logie Programming to Recover

ik Executables .In 2018 ACM SIGSAE
cations Security (CCS “18). October
L, New Yok, NY, USA, 16 pages.

ware, modern software con-
ind shows no sign of slowing.

amming languages, such as
s

e 00

reated data

(members) and

of related data
Cov

Fogrammers to
spirit of enabling speed and

ey T C. for i

analysts and automated algorithms like. Forexample, an lgorithm

scarching for use-gfterree vulncrabiltics requires knowlcdge of

abject constructors [7), and an analyst atiempting to understand &
ple's

malw

whic

r— T
g et

many exploit protects
v+ abstractions, and that the level of protection and efficiency

et of his work oweed by tbers han ACM
o ik,

oz Mach:
ACM ISEN 98- 14503 543 08/10. $15.00
oo/ 1011 /3273243753

know
existing systems that can recover Ce+ abstractions from exceuta-
bles, most of them rely on virtual function tables (vflables) as their

ACM CCS 2018

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis [DISTRIBUTION STATEMENT A] Approved for public release and

Carnegie Mellon University fdvancing Cyber Onerato unlimited distribution 82

Software Engineering Institute

RESEARCH REVIEW 2020

ObjDigger vs. OOAnalyzer Edit Distances on Cleanware

Program # Class # Method ObjDigger ObjDigger OOAnalyzer OOAnalyzer

Edits Edits (%) Edits Edits (%)
Firefox.exe 141 638 507 79.5% 212 33.2%
Log4cpp Debug 139 893 829 92.8% 239 26.8%
Log4cpp Release 76 378 272 72.0% 75 19.8%
muParser Debug 180 1437 1361 94.7% 483 33.6%
muParser Release 94 598 369 61.7% 183 30.6%
MySQL cfg_editor.dll 190 1266 00 00 391 30.9%
MySQL mysqgl.exe 202 1395 o oo 439 31.5%
TinyXML Debug 35 415 268 64.6% 69 16.6%
TinyXML Release 33 283 174 61.5% 55 19.4%

OOAnalyzer recovers 67% to 84% of methods on cleanware programs.

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis
2020 Carnegie Mellon Universi

unlimited distribution

[DISTRIBUTION STATEMENT A] Approved for public release and

83

RESEARCH REVIEW 2020

ObjDigger vs. OOAnalyzer Edit Distances on Malware

Program # Class # Method ObjDigger ObjDigger OOAnalyzer OOAnalyzer

Edits Edits (%) Edits Edits (%)
Malware Ofaaa3d3 21 135 121 89.6% 21 15.6%
Malware 29be5a33 19 130 91 70.0% 15 11.5%
Malware 6098cb7c 55 339 131 38.6% 29 8.6%
Malware 628053dc 207 1920 1245 64.8% 378 19.7%
Malware 67b9be3c 400 2072 1299 62.7% 670 32.3%
Malware cfa69fff 39 184 125 67.9% 37 20.1%
Malware d597bee8 19 133 68 51.1% 17 12.8%
Malware deb6a7al 283 2712 1900 70.1% 639 23.6%
Malware f101c05e 169 1601 987 61.6% 329 20.5%

OOAnalyzer recovers 68% to 91% of methods on smaller malware samples.

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis
2020 Carnegie Mellon Universi

unlimited distribution

[DISTRIBUTION STATEMENT A] Approved for public release and

84

RESEARCH REVIEW 2020

OOAnalyzer Method Classification on Cleanware

Program Constructors Destructors Virtual Function Tables Virtual Methods
Recall Prec. F Recall Prec. F Recall Prec. F Recall Prec. F

Firefox.exe 40/51 40/54 0.76 1/39 1/1 0.05 18/33 18/18 0.71 85/101 85/98 0.85
Log4cpp Debug 192/209 192/197 0.95 | 40/118 40/40 0.51 18/18 18/18 1.00 84/101 84/86 0.92
Log4cpp Release 135/165 135/170 0.81 | 24/73 24/36 0.44 18/21 18/18 0.92 84/101 84/86 0.90
muParser Debug 293/325 293/314 0.92 28/156 28/30 0.30 12/12 12/13 0.96 35/47 35/43 0.78
muParser Release 197/252 197/269 0.76 15/91 15/21 0.27 12/14 12/13 0.89 35/47 35/37 0.83
MySQL cfg_editor.dIl | 260/290 260/311 0.87 107/281 107/111 0.55 69/69 69/69 1.00 321/427 321/325 0.85
MySQL mysql.exe 282/314 282/341 0.86 115/300 115/121 0.55 75/75 75175 1.00 341/453 341/345 0.85
TinyXML Debug 53/60 53/57 0.91 | 0/39 0/3 0.00 24/24 24/24 1.00 101/119 101/102 0.91
TinyXML Release 49/60 49/53 0.87 27/39 27/36 0.72 24/24 24/24 1.00 101/119 101/103 0.91

Precision: How many were found? Recall: Were they correct? F-measure: A harmonic mean.

Some problems with destructor identification, but quite good in other areas

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis

2020 Carnegie Mellon University

unlimited distribution

[DISTRIBUTION STATEMENT A] Approved for public release and

85

RESEARCH REVIEW 2020

OOAnalyzer is The State Of The Art

£ ie XI(‘"()H l,‘ni“-rsi[v Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and

- - . 2020 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

86

RESEARCH REVIEW 2020

OOAnalyzer is The State Of The Art

... In Research

Cilrlll‘(‘_"il‘ Mellon l'ni\'('rsilv Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and

~ o . 2020 Carnegie Mellon University unlimited distribution
Software Engineering Institute

87

RESEARCH REVIEW 2020

How Can We Measure Accuracy?

Measuring the accuracy of the recovered
C++ abstractions has been very difficult.

There are

* multiple correct answers ®
* nearly infinite incorrect answers
* many partially correct answers

Actual

Solution: Edit distances - compute the
number of changes required to transform
our answer into the correct answetr.

Smaller edit distances are better!

Abstractions

Recovered
Abstractions

Cilrll(‘(‘_"i(‘ Mellon l'lli\(‘l'sil_\' (—\dvja(m;mg (‘,ther T)neralm Tradecraft through Automated Static Binary Analysis
2020 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimite d distribution

88

RESEARCH REVIEW 2020

How Can We Measure Accuracy?

Measuring the accuracy of the recovered
C++ abstractions has been very difficult.

There are:
* multiple correct answers
* nearly infinite incorrect answers
* many partially correct answers

Solution: Edit distances - compute the
number of changes required to transform
our answer into the correct answetr.

Smaller edit distances are better!

o—0
Actual

Abstractions

™ oo

Recovered
Abstractions

*—o

Calrnvgiv XI(‘"()II l'ni\(‘rsil_\' Advja(m:mg (‘,ther ?yueralxuw Tradecraft through Automated
2020 Carnegie Mellon University

Software Engineering Institute

1 Static Binary Analysis

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimite d distribution

89

RESEARCH REVIEW 2020

Are we going to introduce ObjDigger?

« Cory could use the first few slides from my CCS talk
« Alternative is to remove ObjDigger results, but then there is nothing to compare to

« Another alternative is simply to summarize results without tables
« OOAnalyzer recovers X% ...

Cilrlll‘(‘_"il‘ Mellon l'"i“-rsily Adva(lwcmg Qyi1er Operator Tradecraft through Automated Static Binary Analysise LI?‘I"SHIES?;%\L“S;ATEMENT A] Approved for public release and
- Carne: y

- . 2020
Software Engineering Institute

gie Mellon University

90

RESEARCH REVIEW 2020

OOAnalyzer is the State of the Art in Research

« Static
- Analyze program without executing it
- No need for test cases
- Can be used on unknown software (malware)

» Targets all classes and all methods
- Existing work focuses on virtual classes/functions (because they are easier)

» Recovers 67-84% of class abstractions correctly
- Existing work recovers <50% of class abstractions correctly
- Most existing work only attempts to recover virtual classes (because they are easier)

Carnegie Mellon University {quéa(p«;mg (‘,‘yh“er ipera\m Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University

R . unlimited distribution.
Software Engineering Institute

91

RESEARCH REVIEW 2020

Research vs Practice

« Larger programs take longer to analyze =» Automation is more valuable on larger
programs

* Prolog makes for a nice academic story
- But does it actually scale?

* Prolog scales... up to a point

C;lrn(‘gi(‘ XI(‘"()H l,‘ni“-rsi[y A(J\Ga(lwcmg le)er Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
- Carne: y

- . gie Mellon University unlimited distribution.
Software Engineering Institute

92

RESEARCH REVIEW 2020

We Originally Looked at a Few Medium Sized Programs
... and a Lot of Small Programs

& (S} [e)]

Program Size in Megabytes

w

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysiso [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution. 93

Software Engineering Institute

RESEARCH REVIEW 2020

Different screenshot

610

$tabling:start_tabling_2/6

12,244 (1,280 /1,416/14,111

reasonMergeClasses/2

66 19,870 11,438

12,855

reasonMergeClasses_B/

2,791

29,051

$tbl_variant_table/6

1,287

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©

2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

94

RESEARCH REVIEW 2020

SWI Detailed Profiling

reasoningLoop/)

suessMergeClasses/0

checkMergeClasses/2

6,222,487
A

Sthi_variant_table/s
T

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University unlimited distribution. 95

RESEARCH REVIEW 2020

SWI Detailed Profiling

checkMergeQlasses/2

Sthi_variant_table/s

Carnegie Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
. X . 2020 Carnegie Mellon University unlimited distribution. 96
Software Engineering Institute

RESEARCH REVIEW 2020

SWI Detailed Profiling =

Sthi_variant_table/S

Carnegie Mell()n University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©
. . . 2020 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

97

RESEARCH REVIEW 2020

mysql_upgrade.exe
11 minutes 10 hours

2000
S
® ystem
Q]
(5] — SwWI
@
- xsb
1000
0
0 10000 20000 30000
time
Carn(‘,gi(‘, Mellon University Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
- ° 2020 Carnegie Mellon University unlimited distribution. 99

Software Engineering Institute

RESEARCH REVIEW 2020

OOAnalyzer Scales Well...

Software Engineering Institute

0:04:19
__ 0:03:36 2
%)
©
c
(]
2 000
b 0:02:53
)
&
e
= 0:02:10
=
2
>
L2 0:01:26
(V]
E
" 0:00:43 o .

[} []
[}
0:00:00 ° ® ° e
0 50 100 150 200 250 300 350 400 450
Number of Methods
Carnegie Mellon University égz\éacnac(:]r;g‘ecrzsi; Szaveerit‘gr Tradecraft through Automated Static Binary Analysis® IDISTRIUTION STATEMENT A] Approved orpublc reease and 100

RESEARCH REVIEW 2020

Software Is really repetitive

Gabel & Su, 2010

Non-Uniqueness (Redundancy) in a Large Java Corpus
100

90
80

70 I EEEEEEEEEEEESR

—e—I|dentifiers Renamed — —e—Exact Tokens

60
50
40
30
20
10

Percent Redundancy

.

u
N
o

35 50 65 80
Length of Candidate Code Fragment in Tokens

Carnegie Mellon Un iversi[y Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
. . . 2020 Carnegie Mellon University unlimited distribution. 105
Software Engineering Institute

RESEARCH REVIEW 2020

Transitioning from Research to Practice

Research was a proof of concept
* Python command line tools that are difficult to use
* Now implemented as a Hex-Rays Plugin for easy use

Model insufficient for use in practice

* One compiler (gcc)

« One optimization level (-00)

» One architecture (x86-64)

» We are training a model that operates in more realistic environments

Carnegie Mellon University {quéa(p«;mg (‘,‘yh“er ipera\m Tradecraft through Automated Static Binary Analysis® [DISTRIBUTION STATEMENT A] Approved for public release and
2020 Carnegie Mellon University

R . unlimited distribution. 1 O 6
Software Engineering Institute

RESEARCH REVIEW 2020

NSA Ghidra Integration to Display C++ Decompilation

Integrates OOAnNalyzer abstractions
into NSA's Ghidra software reverse

engineering tool

* Integrates with symbols and types

 Improves decompiler
* Eases transition

Plugin significantly overhauled

» Testing with large programs

 Progress reporting during import

» Automatic builds for Ghidra versions

Also available for IDA Pro

Eile Edit Analysis CERT Navigation Search

et Tools Jind:

H e = B0E0 JIDULFEYE: 33 o /JESGGL0B¢ 4 @ JIsd
Feganees 1o > x| I B S @ x
v &1 ooexd.exe [~
B s 004052b1 0 55 PUSH
B rdata 004052b2 004 Bb ec MoV
B .data 004052b4 004 53 PUSH
% ""‘ 004052b5 008 8b 5d 08 MoV Jdword ptr [EEP + param_1] I
e
[DebugData 004852b8 008 56 PUSH
004052b9 00c 8b f1 Mov this
004852bb 60c 8b 46 20 MoV .dword ptr + 8x20]
— 004052be 00c 8b 00 MoV .dword ptr [E
e r 004052¢0 00c 85 O TEST JE
EigymboiTree 3 m x 004852c2 80c 74 29 iz LAB_0084652ed
>@ System_error category 004052¢4 00c 8b 42 10 Mov this,dword ptr [ESI + 0x16]
>@ bad_slor ©04852c7 60c 39 01 cHp dword ptr [this],EAx
@ bt 004052¢9 00cC 73 22 INC LAB_004052ed
> @ bad_exception 004052ch 00c 83 b ff cHP EBX, -Ox1
V@ basc flebut schar struct,sed 004052ce 00c 74 08 iz LAB_0B4052d8
. IR Com Ay 00405240 00c Of b6 40 Ff MOVZX EAX,byte ptr [EAX + -0x1] 3
RTTI_Base_Class_Descriptc Lt -
o RTTL Class_Hierarchy.Desi ©04852d4 60c 3b <3 cHp EAX, EB; :
s RITI_Complete_Object Lov 004052d6 00c 75 15 mz LAB_004052ed
o vitsble
o vitable_meta_per
arucsiccf % @~ %
RTTIBase_Class Array
s QITI_Base_Class Descriptc
® RTTI_Base_Class Descriptc 8
o R Class therarchy Des | || g = param 1;
o fscompleteoectto | 10 | uvarz = **(uint **)((int)this + 0x20);
o vitable_meta_ptr 11 &f (((uvar 0) || (uvar2 <= *%{uint **)((int)this + 0x10))) ||
@ basc ostreamechar.struct s | 12 ((param_1 1= OxfEfffff && ((uint)*(byte *)(uvar2 - 1) != param_1)))) {
o RITIBase Class Array 13 if ((*(int *)((int)this + 0x54) !=) && (param_1 != OxFFFFFFFF)) {
o RTTI_Base_Class Descriptc | | 14 uvar3 = (undefined)paran_1;
® RTTI.Class Hierarchy.Desy | 115 if (=(int *)((int)this + 0x44) == 0) {
N ":;”l;l["‘l"m—““l o e param_1 = param_1 & Oxffffff | param_1 << @x18;
3 o= - 17 Varz = FUN_DB405169((int)sparam_1 + 3,%(int *)((int)this + ©x54));
5@ basic streambufechar,struct | ||18 ar2 \e') {
b
&0 Data Type Manager halta] »¥ if ((undefined *)**(int **)((int)this + 0x20) != (undefined *)((int)this + 0x48)) {
- o B #(undefined *)((int)this + 0x48) =
T strin FUN_00405212((int)this);
4, Terminateacsiring return uvari:
& TryBlockMapEntry * }
) TryBlockMapEntry[2] }
fs Typepesaripror param_1 = Bxffffffff;
& TuneDescritor *
Fiter: B Console * C; Decompile: FUN_004052af = o Bookmarks *
@ 004052c0 FUN_004052af TEST EAX,EAX

Carnegie Mellon University
Software Engineering Institute

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis©

2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

107

RESEARCH REVIEW 2020

Fixing Performance Bottlenecks

Trigger rules

* If there is a new fact F, what conclusions C can be made using rule R that could
not be made previously?

* No need for recomputation ©
« Manually written/analyzed ®

Moving toward automation
» Manual effort is tedious and error-prone
* Inspired monotonic tabling in SWI Prolog

Cilrlll“_"il‘ Mellon l'ni\'('rsilv Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis© [DISTRIBUTION STATEMENT A] Approved for public release and
- - . y 2020 Carnegie Mellon University unlimited distribution. 108
Software Engineering Institute

