

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Security Requirements Engineering

ABSTRACT: When security requirements are considered at all during the sys-
tem life cycle, they tend to be general lists of security features such as password
protection, firewalls, virus detection tools, and the like. These are, in fact, not
security requirements at all but rather implementation mechanisms that are in-
tended to satisfy unstated requirements, such as authenticated access. As a result,
security requirements that are specific to the system and that provide for protec-
tion of essential services and assets are often neglected. In addition, the attacker
perspective is not considered, with the result that security requirements, when
they exist, are likely to be incomplete. We believe that a systematic approach to
security requirements engineering will help to avoid the problem of generic lists
of features and to take into account the attacker perspective. Several approaches
to security requirements engineering are described here and references are pro-
vided for additional material that can help you ensure that your products effec-
tively meet security requirements.

THE IMPORTANCE OF REQUIREMENTS ENGINEERING
It comes as no surprise that requirements engineering is critical to the success of
any major development project. Some studies have shown that requirements en-
gineering defects cost 10 to 200 times as much to correct once fielded than if
they were detected during requirements development [Boehm 88, McConnell
01]. Other studies have shown that reworking requirements, design, and code
defects on most software development projects costs 40 to 50 percent of total
project effort [Jones 86], and the percentage of defects originating during re-
quirements engineering is estimated at more than 50 percent. The total percent-
age of project budget due to requirements defects is 25 to 40 percent [Wiegers
03].

A prior study found that the return on investment when security analysis and
secure engineering practices are introduced early in the development cycle rang-
es from 12 to 21 percent, with the highest rate of return occurring when the anal-
ysis is performed during application design [Berinato 02]. The National Institute
of Standards and Technology (NIST) reports that software that is faulty in secu-
rity and reliability costs the economy $59.5 billion annually in breakdowns and
repairs [NIST 02]. The costs of poor security requirements show that even a
small improvement in this area would provide a high value. By the time that an

Nancy Mead

August 2006

application is fielded and in its operational environment, it is very difficult and
expensive to significantly improve its security.

Requirements problems are among the top causes [Charette 05] of why

• projects are significantly over budget
• projects are past schedule
• projects are significantly reduced in scope or are cancelled
• development teams deliver poor-quality applications
• products are not significantly used once delivered

These days we have the further problem that the environment in which we do
requirements engineering has changed, resulting in an added element of com-
plexity. Software development occurs in a dynamic environment that changes
while projects are still in development, with the result that requirements are in
flux from the beginning. This can be due to conflicts between stakeholder
groups, rapidly evolving markets, the impact of tradeoff decisions, and so on.

In addition, requirements engineering on individual projects often suffers from
the following problems:

• Requirements identification typically does not include all relevant stake-
holders and does not use the most modern or efficient techniques.

• Requirements are often statements describing architectural constraints or
implementation mechanisms rather than statements describing what the sys-
tem must do.

• Requirements are often directly specified without any analysis or modeling.
When analysis is done, it is usually restricted to functional end -user re-
quirements, ignoring (a) quality requirements such as security, (b) other
functional and nonfunctional requirements, and (c) architecture, design, im-
plementation, and testing constraints.

• Requirements specification is typically haphazard, with specified require-
ments being ambiguous, incomplete (e.g., nonfunctional requirements are
often missing), inconsistent, not cohesive, infeasible, obsolete, neither testa-
ble nor capable of being validated, and not usable by all of their intended
audiences.

• Requirements management is typically weak, with ineffective forms of data
capture (e.g., in one or more documents rather than in a database or tool) and
missing attributes. It is often limited to tracing, scheduling, and prioritiza-
tion, without change tracking or other configuration management. Alterna-
tively, it may be limited to the capabilities provided by a specific tool, with
little opportunity for improvement.

1 | SECURITY REQUIREMENTS ENGINEERING

Quality Requirements
Even when organizations recognize the importance of functional end-user re-
quirements, they often still neglect quality requirements, such as performance,
safety, security, reliability, and maintainability. Some quality requirements are
nonfunctional requirements, but others describe system functionality, even
though it may not contribute directly to end-user requirements.

As you might expect, developers of certain kinds of mission-critical systems and
systems in which human life is involved, such as the space shuttle, have long
recognized the importance of quality requirements and have accounted for them
in software development. In many other systems, however, quality requirements
are ignored altogether or treated in an inadequate way. Hence we see the failure
of software associated with power systems, telephone systems, unmanned space-
craft, and so on. If quality requirements are not attended to in these types of sys-
tems, it is far less likely that they will be focused on in ordinary business sys-
tems.

This inattention to quality requirements is exacerbated by the desire to keep costs
down and meet aggressive schedules. As a consequence, software development
contracts often do not contain specific quality requirements but rather some
vague generalities about quality, if anything at all.

SECURITY REQUIREMENTS ENGINEERING
If security requirements are not effectively defined, the resulting system cannot
be evaluated for success or failure prior to implementation. (See the Risk Man-
agement content area.) When security requirements are considered, they are of-
ten developed independently of other requirements engineering activities. As a
result, specific security requirements are often neglected, and functional re-
quirements are specified in blissful ignorance of security aspects.

In reviewing requirements documents, we typically find that security require-
ments, when they exist, are in a section by themselves and have been copied
from a generic list of security features. The requirements elicitation and analysis
that are needed to get a better set of security requirements seldom take place.

As noted previously, operational environments and business goals often change
dynamically, with the result that security requirements development is not a one-
time activity. Therefore the activities that we will describe should be planned as
iterative activities, as change occurs. Although we describe them as one-time
activities for the sake of exposition, you can expect mini life cycles to occur over
the course of a project. Much requirements engineering research and practice

2 | SECURITY REQUIREMENTS ENGINEERING

addresses the capabilities that the system will provide. So a lot of attention is
given to the functionality of the system, from the user’s perspective, but little
attention is given to what the system should not do [Bishop 02]. Users have im-
plicit assumptions for the software applications and systems that they use. They
expect them to be secure and are surprised when they are not. These user as-
sumptions need to be translated into security requirements for the software sys-
tems when they are under development. Often the implicit assumptions of users
are overlooked and features are focused on instead.

Another important perspective is that of the attacker. The attacker is not particu-
larly interested in functional features of the system, unless they provide an ave-
nue for attack. The attacker typically looks for defects and other conditions out-
side the norm that will allow a successful attack to take place. It’s important for
requirements engineers to think about the attacker’s perspective and not just the
functionality of the system from the end-user’s perspective. The discussion of
attack patterns in Chapter 2 of Software Security Engineering: A Guide for Pro-
ject Managers [Allen 08] provides a good place to start this analysis. Other tech-
niques that can be used in defining the attacker’s perspective are misuse and
abuse cases, attack trees [Ellison 03, Schneier 00], and threat modeling. Security
requirements are often stated as negative requirements. As a result, general secu-
rity requirements, such as “The system shall not allow successful attacks,” are
usually not feasible, as there is no consensus on ways to validate them other than
to apply formal methods to the entire system. We can, however, identify the es-
sential services and assets that must be protected. Operational usage scenarios
can be extremely helpful aids to understanding which services and assets are
essential. By providing threads that trace through the system, operational usage
scenarios also help to highlight security requirements, as well as other quality
requirements such as safety and performance [Reifer 03]. Once the essential ser-
vices and assets are understood, we are able to validate that mechanisms such as
access control, levels of security, backups, replication, and policy are imple-
mented and enforced. We can also validate that the system properly handles spe-
cific threats identified by a threat model and correctly responds to intrusion sce-
narios.

A discussion of the importance of security requirements engineering can be
found at [Mead 08].

Methods and Techniques
As usable approaches to security requirements engineering continue to be devel-
oped and mechanisms are identified to promote organizational use, project man-
agers can do a better job of ensuring that the resulting product effectively meets
security requirements. Some useful techniques include

3 | SECURITY REQUIREMENTS ENGINEERING

• Comprehensive, Lightweight Application Security Process (CLASP) ap-
proach to security requirements engineering. CLASP is a life-cycle process
that suggests a number of different activities across the development life cy-
cle in order to improve security. Among these is a specific approach for se-
curity requirements.

• System Quality Requirements Engineering (SQUARE). This is a process
aimed specifically at security requirements engineering.

• Core security requirements artefacts. This approach takes an artifact view
and starts with the artifacts that are needed to achieve better security re-
quirements. It provides a framework that includes both traditional require-
ments engineering approaches to functional requirements and an approach to
security requirements engineering that focuses on assets and harm to those
assets.

Some other useful techniques are formal specification approaches to security
requirements, such as REVEAL and Software Cost Reduction (SCR), and the
higher levels of the Common Criteria.

As an additional reference, the SOAR report Software Security Assurance
[Goertzel 07] contains a good discussion of SDLC processes and various ap-
proaches to security requirements engineering.

In this content area we discuss several approaches, including misuse and abuse
cases [process diagram], SQUARE, elicitation and associated case studies, and
prioritization and an associated case study. We consider cost/benefit associated
with security requirements in two articles. One article considers cost/benefit us-
ing a variety of prioritization methods. Another article discusses the use of inte-
ger programming for optimizing investment in implementation of security re-
quirements elicitation and security requirements prioritization. While the
processes we discuss are similar to those used for requirements engineering in
general, we have found that when we get into the detailed steps of how to do
security requirements engineering, there are specific techniques that are particu-
larly useful, and we highlight these where they occur. We list local references. A
more comprehensive bibliography is also included for this topic.

Although much work remains to be done, organizations can significantly im-
prove the security of their systems by utilizing a systematic approach to security
requirements engineering. The methods described here can help in this task.

Maturity of Practices
The techniques described have all had successful pilots and prototypes. SCR,
REVEAL, and Common Criteria are mature practices.

4 | SECURITY REQUIREMENTS ENGINEERING

BUSINESS CASE RATIONALE
Although data exists to support the benefit of requirements engineering in gen-
eral, the data to specifically support the benefits of security requirements engi-
neering is anecdotal. The discussion of integer programming for prioritizing in-
vestments in security requirements is one such example. Organizations that
systematically develop security requirements see benefit from this activity, but it
is not usually quantified in terms of return on investment. Organizations that
have observed return on investment are typically vendor organizations such as
Microsoft. Fortify has done vendor studies showing dramatic return on invest-
ment for eliminating vulnerabilities at requirements time, rather than later in the
software development life cycle. We hope that in the future more supporting data
will be amassed and made available to support this important activity. Discus-
sion of a broader business case development model should be helpful to those
striving to develop specific business cases. (See Business Case Models.)

REFERENCES

[Allen 08] Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R. Software Security
Engineering: A Guide for Project Managers. Boston, MA: Addison-Wesley, 2008.

[Berinato 02] Berinato, Scott. “Finally, a Real Return on Security Spending.” CIO, April 8, 2002.

[Bishop 02] Bishop, Matt. Computer Security: Art and Science. Boston, MA: Addison-Wesley
Professional, 2002.

[Boehm 88] Boehm, Barry W. & Papaccio, Philip N. “Understanding and Controlling Software
Costs. IEEE Transactions on Software Engineering 14, 10 (October 1988): 1462-
1477.

[Charette 05] Charette, R. N. “Why Software Fails.” IEEE Spectrum 42, 9 (September 2005): 42-29.

[Ellison 03] Ellison, Robert J. & Moore, Andrew. P. Trustworthy Refinement Through Intrusion-
Aware Design (CMU/SEI-2003-TR-002, ADA414865). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2003.

[Goertzel 07] Goertzel, Karen Mercedes; Winograd, Theodore; McKinley, Holly Lynne; Oh, Lyndon;
Colon, Michael; McGibbon, Thomas; Fedchak, Elaine; & Vienneau, Robert. Software
Security Assurance: A State-of-the-Art Report (SOAR). Herndon, VA: Information
Assurance Technology Analysis Center (IATAC) and Defense Technical Information
Center (DTIC), 2007.

[Jones 86] Jones, Capers, ed. Tutorial: Programming Productivity: Issues for the Eighties, 2nd
Ed. Los Angeles: IEEE Computer Society Press, 1986.

5 | SECURITY REQUIREMENTS ENGINEERING

[Linger 98] Linger, R. C.; Mead, N. R.; & Lipson, H. F. "Requirements Definition for Survivable
Systems," 14-23. Third International Conference on Requirements Engineering. Colo-
rado Springs, CO, April 6-10, 1998. Los Alamitos, CA: IEEE Computer Society, 1998.

[McConnell
01]

McConnell, Steve. “From the Editor - An Ounce of Prevention.” IEEE Software 18, 3
(May 2001): 5-7.

[Mead 08] Mead, N. R. & Allen, J. H. "Identifying Software Security Requirements Early, Not
After the Fact" (audio). InformIT, 2008.

[Mead 03] Mead, N. R. Requirements Engineering for Survivable Systems (CMU/SEI-2003-TN-
013). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2003.

[NIST 02] National Institute of Standards and Technology. "Software Errors Cost U.S. Economy
$59.5 Billion Annually" (NIST 2002-10), 2002.

[Reifer 03] Reifer, D.; Boehm, B.; & Gangadharan, M. “Estimating the Cost of Security for COTS
Software,” 178–186. Proceedings of the Second International Conference on COTS-
Based Software Systems. Ottawa, Ontario, Canada, February 2003. Springer, Lec-
ture Notes in Computer Science, 2003.

[Schneier 00] Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World. New York,
NY: John Wiley & Sons, 2000.

[Wiegers 03] Wiegers, Karl E. Software Requirements. Redmond, WA: Microsoft Press, 2003.

6 | SECURITY REQUIREMENTS ENGINEERING

Copyright 2005-2012 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT® and CERT Coordination Center® are registered marks of
Carnegie Mellon University.

DM-0001120

7 | SECURITY REQUIREMENTS ENGINEERING

	Security Requirements Engineering
	The Importance of Requirements Engineering
	Quality Requirements

	Security Requirements Engineering
	Methods and Techniques
	Maturity of Practices

	Business Case Rationale
	References

