
1Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Approved for Public Release

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Using AI to Find Security Defects in
Code / Build More Secure Software
Defense Science & Technology Agency (DSTA) Workshop
Sept. 16, 2020

Dr. Lori Flynn on behalf of the Office of the Undersecretary of
Defense for Research and Engineering

Senior Software Security Researcher

2Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-0739

mailto:permission@sei.cmu.edu

3Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Software Cost and Vulnerability Threat to Missions

Finding and fixing software flaws late in the acquisition lifecycle drives up cost and
delays delivery

Latent software defects put missions at risk. Sometimes those defects are exposed
during operations.

AI to automate and improve what humans do, to develop and
analyze code for security, and to secure AI software itself.

4Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Fixing Problems Late Drives Costs, Delays Deployment

Planning Acquisition
Strategy

Architecture Software
Development

Integration Testing,
Validation
& Verification

Monitoring
& User
Experience

Remediation

Deployment and OperationsRequirements

Development and Integration

Sustainment

AI to automate and improve what humans do, to develop and
analyze code for security, and to secure AI software itself.

5Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

AI in Automatic Programming – The Beginning

“The IBM Mathematical Formula Translating
System or briefly, FORTRAN, will comprise a
large set of programs to enable the IBM 704 to
accept a concise formulation of a problem in
terms of a mathematical notation and to produce
automatically a high speed 704 program for the
solution of the problem.”

Source: J.W. Backus, H. Herrick and I. Ziller,
https://archive.computerhistory.org/resources/text/Fortran/102679231.05.01.acc.pdf

https://archive.computerhistory.org/resources/text/Fortran/102679231.05.01.acc.pdf

6Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

AI in Automatic Programming: Generating Code thru
Search – High Assurance SPIRAL

“High Assurance SPIRAL aims to solve
the last mile problem for the synthesis
of high assurance implementations of
controllers for vehicular systems that
are executed in todays and future
embedded and high performance
embedded system processors.”

Sources: Franz Franchetti, José M. F. Moura, Manuela Veloso, Andre Platzer, Soummya Kar, David Padua, Jeremy Johnson,
Mike Franusich, High Assurance Spiral: Scalable and Performance Portable Domain-Specific Control System Synthesis,
https://users.ece.cmu.edu/~franzf/hacms.htm; http://www.spiral.net/

https://users.ece.cmu.edu/~franzf/hacms.htm
http://www.spiral.net/

7Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Using AI For Autocompletion

Safe, correct code could be written
incrementally
• Using n-grams
• Using deep learning (Generative

Pretrained Transformer 2)

Sources:
E. Schutte, Autocomplete from StackOverflow, 2016,
https://emilschutte.com/stackoverflow-autocomplete/

(Jacob Jackson) TabNine, “Autocompletion with deep learning,” July 18, 2019,
https://tabnine.com/blog/deep

L. Tung, “New tool promises to turbo-charge coding in major programming
languages,” July 25, 2019, https://www.zdnet.com/article/new-tool-promises-to-
turbo-charge-coding-in-major-programming-languages/

© 2019 TabNine, See https://tabnine.com/eula

https://emilschutte.com/stackoverflow-autocomplete/
https://tabnine.com/blog/deep
https://www.zdnet.com/article/new-tool-promises-to-turbo-charge-coding-in-major-programming-languages/
https://www.zdnet.com/article/new-tool-promises-to-turbo-charge-coding-in-major-programming-languages/
https://www.zdnet.com/article/new-tool-promises-to-turbo-charge-coding-in-major-programming-languages/
https://tabnine.com/eula

8Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Using classifiers for static analysis alerts
Active learning updates predictions as new data is received.
• [Ruthruff]: 85% accurate false positive prediction for FindBugs, Logistic Regression, adaptive using code-

fix decisions
• [Heckman] ARM:

- 81% true positive alerts after investigating only 20% of alerts (vs. avg. of 50 random orderings found 22% after
investigating 20%)

- Code locality and alert type accuracy (new adjudication feedback)
- Code fixer feedback to system

• [Kremenec] Feedback-Rank
- 2-8x improvement of performance ratio over random
- Performance ratio: ratio between random and shift per bug from optimal
- Code locality and alert type accuracy (new determinations feedback)

[Heckman] Heckman, Sarah Smith. "Adaptively ranking alerts generated from automated static analysis.“, Crossroads, 2007.
[Heckman B] S. Heckman, L. Williams, On establishing a benchmark for evaluating static analysis alert prioritization and classification techniques, Empirical Software
Engineering and Measurement, 2008, pp. 41–50.
[Kremenec] T. Kremenek, K. Ashcraft, J. Yang, D. Engler, Correlation exploitation in error ranking, FSE, 2004, pp.83–93.
[Ruthruff] J. Ruthruff et al. "Predicting accurate and actionable static analysis warnings: an experimental approach." ICSE, 2008.

Finding Code Defects Using AI: Classifiers & Active Learning

9Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Finding Code Defects Using AI: Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Select
candidate
code bases for
evaluation

10Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Finding Code Defects Using AI: Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Run SA Tool(s)
collecting code alerts
and metrics (e.g.
complexity)

11Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Finding Code Defects Using AI: Data Quality

Convert alerts to
common format and
map to CERT Secure
Coding Rules/CWEs

12Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Finding Code Defects Using AI: Data Quality

Humans evaluate the
violations, e.g.
marking them as
TRUE or FALSE

13Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Finding Code Defects Using AI: Data Quality

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Use the training data to
build machine learning
classifiers that predict
TRUE and FALSE
determinations for new
alerts

14Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Finding Code Defects Using AI: Data Quality

What do TRUE/FALSE
mean? Are there
other
determinations I can
use?

15Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

One collaborator reported using the determination
True to indicate that the issue reported by the alert
was a real problem in the code.

Another collaborator used True to indicate that
something was wrong with the diagnosed code,
even if the specific issue reported by the alert was
a false positive!

Data Quality: What is Truth?
Finding Code Defects Using AI: Data Quality

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)

16Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data Inconsistent assignment of
audit determinations may
have a negative impact on
classifier development!

Finding Code Defects Using AI: Data Quality

17Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Data Quality: Lexicon And Rules

• We developed a lexicon and auditing rule set for our
collaborators

• Includes a standard set of well-defined determinations
for static analysis alerts

• Includes a set of auditing rules to help auditors make
consistent decisions in commonly-encountered situations

Finding Code Defects Using AI: Data Quality

Different auditors should make the same determination for
a given alert

Improve the quality and consistency of audit data for the
purpose of building machine learning classifiers

Help organizations make better-informed decisions about
bug-fixes, development, and future audits.

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)

18Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Lexicon: Audit Determinations

Supplemental Determinations

Audit
Determinations

Choose ONE per alert! Choose ANY NUMBER per alert!

Dangerous
construct

Ignore

Inapplicable
environment

Dead

Basic Determinations

Unknown (default)

True False

Complex Dependent

Finding Code Defects Using AI: Data Quality

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)

19Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Data Quality: Audit Rules

Goals
• Clarify ambiguous or complex auditing scenarios
• Establish assumptions auditors can make
• Overall: help make audit determinations more consistent

We developed 12 rules
• Drew on our own experiences auditing code bases at CERT
• Trained 3 groups of engineers on the rules, and incorporated their feedback

Finding Code Defects Using AI: Data Quality

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)

20Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

FY16-19 My SEI Static Analysis Alert Classification Research

FY16
• Issue addressed: classifier

accuracy
• Novel approach: multiple

static analysis tools as
features

• Result: increased accuracy

FY17
• Issues addressed: data

quality, too little labeled
data for accurate classifiers
for some conditions (e.g.,
CWEs, coding rules)

• Novel approach: audit
rules+lexicon, use test
suites to automate the
production of labeled
(True/False) meta-alert data*
for many conditions

• Result: high precision for
more conditions

FY18-19
• Issue addressed: little use of

automated alert classifier
technology (requires $$,
data, experts)

• Novel approach: develop
extensible architecture with
novel test-suite data method

• Result: enabled wider use of
classifiers (less $$, data,
experts) with extensible
architecture, API, software to
instantiate architecture, and
adaptive heuristic research

Goal: Enable practical automated classification, so all meta-alerts can be addressed.

• * By the end of FY18, ~38K new labeled (T/F) alerts from eight SA tools on the Juliet test suite (vs. ~7K from CERT audit archives over 10 years)
• L. Flynn publications at SEI Digital Library: https://resources.sei.cmu.edu/library/author.cfm?authorid=31216

https://resources.sei.cmu.edu/library/author.cfm?authorid=31216

21Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Finding Code Defects Using AI: Data Quantity & Quality

CERT- Audited Archives Characterization
• 58 CERT coding rules with 20 or more

audited (labeled) alerts
• 25 rules all (or nearly all) determined

one way (True or False)
• Other 324 CERT rules have little or no

labeled data
• Labeled data for 158 of 382 CERT rules
• 2,487 True and 4,980 False

L. Flynn et al. “Prioritizing Alerts from Multiple Static Analysis Tools, Using Classification Models”, Software QUAlities and their Dependencies
(SQUADE, ICSE 2018 workshop). https://resources.sei.cmu.edu/asset_files/ConferencePaper/2018_021_001_524697.pdf

https://resources.sei.cmu.edu/asset_files/ConferencePaper/2018_021_001_524697.pdf

22Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Test Suites Used for AI Data Generation: Juliet Initial Data

Alert Type Labeled Meta-alert (counts
a fused alert once)

TRUE 13,330
FALSE 24,523

Big savings: manual audit of 37,853 alerts from non-test-suite
programs would take an unrealistic minimum of 1,230 hours
(117 seconds per alert audit*).

• First 37,853 alert audits wouldn’t cover many conditions
(and sub-conditions) covered by the Juliet test suite!

• Need true and false labels for classifiers.
• Realistically: enormous amount of manual auditing time to
develop that much data.

These are initial metrics (more data to follow as we use more
tools and test suites).

Lots of new data for
creating classifiers

(37,853 labeled alerts)

• L. Flynn and Z. Kurtz. “Using Test Suites for Static Analysis Alert Classifiers”, https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=526030
• *Nathaniel Ayewah and William Pugh, "The Google FindBugs Fixit," Proceedings of the 19th International Symposium on Software Testing and Analysis, ACM, 2010.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=526030

23Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

FY20 My SEI Static Analysis Alert Classification Research

• Issue addressed: It takes too much time to adjudicate static analysis alerts/meta-alerts during
continuous integration (CI).

• Novel approach: During CI builds, use classifiers with precise cascading and CI/CD features
• Results:

- Design for CI-SCAIFE system integration
- Cascading API defined, for true/false adjudications ‘cascade’ to subsequent versions of code
- Less-precise cascading implemented, test results
- Significant progress on CI-SCAIFE system integration development
- Deployment and testing by DoD collaborators (multiple rounds), & public API + code subset publications

• Also: RC_Data open dataset for improved classifier research. Published our own data to begin,
plan to grow, with our data and data from others. University of Virginia plans to add data.

Goal: Enable practical automated classification, so all meta-alerts can be addressed.

Lori Flynn, Ebonie McNeil, and Matt Sisk. “Open Dataset RC_Data for Classifier Research”,
https://wiki.sei.cmu.edu/confluence/display/seccode/Open+Dataset+RC_Data+for+Classifier+Research
L. Flynn, E. McNeil, J. Yankel. “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE Code, the SCAIFE API, Swagger-Editor, and Developing Your Tool with Auto-Generated
Code”, https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354
Lori Flynn. “Managing Static Analysis Alerts with Efficient Instantiation of the SCAIFE API into Code and an Automatically Classifying System”
https://insights.sei.cmu.edu/author/lori-flynn/

https://wiki.sei.cmu.edu/confluence/display/seccode/Open+Dataset+RC_Data+for+Classifier+Research
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354
https://insights.sei.cmu.edu/author/lori-flynn/

24Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Cross-project defect prediction:
• Compares 2 types of unsupervised classifiers compared to manual efforts to
make homogenous datasets. Connectivity-based classification using spectral
clustering worked well (but supervised better). [Baishakhi]

• 9% improvement in cross-project defect prediction, using semantic features
[Wang]

• At SEI, ongoing work on cross-project prediction and active learning with mix of
test suite and natural program data [Flynn]

[Baishakhi] Ray, Baishakhi, et al. "On the naturalness of buggy code." ICSE, 2016.
[Flynn] L. Flynn and Z. Kurtz. “Using Test Suites for Static Analysis Alert Classifiers”, https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=526030
[Wang] Wang, Song, Taiyue Liu, and Lin Tan. "Automatically learning semantic features for defect prediction." ICSE, 2016.
[Zhang] Zhang, Feng, et al. "Cross-project defect prediction using a connectivity-based unsupervised classifier." ICSE, 2016.

Finding Code Defects Using AI: Cross-Project Prediction

https://resources.sei.cmu.edu/library/asset-view.Using
https://resources.sei.cmu.edu/library/asset-view.Using
https://resources.sei.cmu.edu/library/asset-view.Using

25Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Finding Code Defects – AI that Considers Source Code
as Natural Language

Analyze Source Code for Insecure Coding
• Supplements Compiler-style Checking
• Treats Programs Like Natural Language

Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International
Conference on Software Engineering (ICSE '16). ACM, New York, NY, USA,
297-308. DOI: https://doi.org/10.1145/2884781.2884804

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec:
learning distributed representations of code. Proc. ACM Program. Lang. 3,
POPL, Article 40 (January 2019), 29 pages. DOI:
https://doi.org/10.1145/3290353

Sources: Carson D. Sestili, William S. Snavely, Nathan M. VanHoudnos,
Towards security defect prediction with AI, Sep 12, 2018,
https://arxiv.org/abs/1808.09897

https://arxiv.org/abs/1808.09897
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/3290353

26Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Using AI to Drive Test Inputs – Fuzzing

“Fuzzing:” Generating and Testing Random Inputs
Original: Random or Deterministic
Now: Use AI to Guide Generation of Sample Inputs

D. She, K. Pei, D. Epstein, J. Yang, B. Ray, S. Jana, “NEUZZ: Efficient Fuzzing with Neural
Program Smoothing,” 40th IEEE Symposium on Security and Privacy, May 20--22, 2019, San
Francisco, CA, USA, https://arxiv.org/pdf/1807.05620.pdf

G. Yan, J. Lu, Z. Shu ; Y. Kucuk, “ExploitMeter: Combining Fuzzing with Machine Learning for
Automated Evaluation of Software Exploitability,” 2017 IEEE Symposium on Privacy-Aware
Computing (PAC), 1-4 Aug. 2017, https://doi.org/10.1109/PAC.2017.10

Sources: A. Householder, Announcing CERT Basic Fuzzing Framework Version 2.8, Oct. 5,
2016, https://insights.sei.cmu.edu/cert/2016/10/announcing-cert-basic-fuzzing-framework-bff-
28.html

https://insights.sei.cmu.edu/cert/2016/10/announcing-cert-basic-fuzzing-framework-bff-28.html
https://insights.sei.cmu.edu/cert/2016/10/announcing-cert-basic-fuzzing-framework-bff-28.html
https://doi.org/10.1109/PAC.2017.10
https://arxiv.org/pdf/1807.05620.pdf

27Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Variety and combination of manual techniques can be
executed by an AI system
• AI planning using an attack graph against attack

surfaces
• Markov Decision Process (or Partially Observable

Markov Decision Process) over application state
• Reinforcement learning

Using AI to Improve Penetration Testing

Sources:

K. Durkota and V. Lisy, “Computing Optimal Policies for Attack Graphs with Action Failures and Costs,”
Conference: Proceedings of the 7th Starting AI Researchers' Symposium (STAIRS), December 2013,
https://www.researchgate.net/profile/Karel_Durkota/publication/273640839_Computing_Optimal_Policies_for_Atta
ck_Graphs_with_Action_Failures_and_Costs

C. Sarraute, O. Buffet, and J. Hoffmann, “POMDPs Make Better Hackers: Accounting for Uncertainty in
Penetration Testing,” AAAI, 2012, https://arxiv.org/pdf/1307.8182

J. Schwartz, “Autonomous Penetration testing using Reinforcement Learning, Nov 16, 2018,
https://arxiv.org/ftp/arxiv/papers/1905/1905.05965.pdf

https://www.researchgate.net/profile/Karel_Durkota/publication/273640839_Computing_Optimal_Policies_for_Atta
https://arxiv.org/pdf/1307.8182
https://arxiv.org/ftp/arxiv/papers/1905/1905.05965.pdf

28Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Automated Program Repair – DARPA Cyber Grand
Challenge

“Mayhem” demonstrated automated
cyber defense

• Detect attack on program
• Analyze changes to program
• Deploy updated software

Source: DARPA, “Mayhem” Declared Preliminary Winner of Historic Cyber Grand Challenge, Aug 4, 2016,
https://www.darpa.mil/news-events/2016-08-04

https://www.darpa.mil/news-events/2016-08-04

29Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

AI Supporting Judgement – IBM Watson to Improve
Assurance

• Acquisition programs generate
voluminous documentation

• Assurance is based on assembling and
reviewing relevant evidence from
documents

• Finding appropriate evidence or
explanations can be challenging

• SEI proof of concept

Source: Mark, Sherman, Verifying Software Assurance with IBM’s Watson, https://www.youtube.com/watch?v=aW3497xhypY, Sep 11, 2017

https://www.youtube.com/watch?v=aW3497xhypY

30Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

AI Attacks Are Different
Feature Differentiation

“Milla Jovovich”

Pixel Manipulation

“Milla Jovovich”

$0.22 to print

Source: Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016. Accessorize to a Crime: Real and Stealthy Attacks on State-of-
the-Art Face Recognition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS '16). ACM, New
York, NY, USA, 1528-1540. DOI: https://doi.org/10.1145/2976749.2978392

Source: Athalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2017, July 24).
Synthesizing Robust Adversarial Examples. arXiv [cs.CV]. Retrieved from
http://arxiv.org/abs/1707.07397

https://doi.org/10.1145/2976749.2978392
http://arxiv.org/abs/1707.07397

31Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Engineering Defenses
Su et al. (2018) empirically
demonstrates robustness/accuracy
trade off in ImageNet models

Top 1 Accuracy

Pe
r P

ix
el

 L
2

C
LE

VE
R

Some Technical Approaches for Defending AI Systems

Training Defenses
Wong & Kolter (2017)
output bound

Causal Defenses
Tsipras et al. (2018)
adversarial data augmentation

Turtle Bird

Sources:
Wong, E., & Kolter, J. Z. (2017). Provable defenses against adversarial examples via the convex outer adversarial polytope. ArXiv:1711.00851 [Cs, Math]. Retrieved from
http://arxiv.org/abs/1711.00851;
Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2018). Robustness May Be at Odds with Accuracy. ArXiv:1805.12152 [Cs, Stat]. Retrieved from
http://arxiv.org/abs/1805.12152;
Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., & Gao, Y. (2018). Is Robustness the Cost of Accuracy? – A Comprehensive Study on the Robustness of 18 Deep Image
Classification Models. ArXiv:1808.01688 [Cs]. Retrieved from http://arxiv.org/abs/1808.01688;
Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D. Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM workshop on
Security and artificial intelligence (AISec '11). ACM, New York, NY, USA, 43-58. DOI=http://dx.doi.org/10.1145/2046684.2046692

http://arxiv.org/abs/1711.00851
http://arxiv.org/abs/1805.12152
http://arxiv.org/abs/1808.01688
http://dx.doi.org/10.1145/2046684.2046692

32Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

AI is Playing an Increasing Role in Cybersecurity

Landscape Tickets
Inference

cGAN(Tom’s
features)

Tom Tom’s
features

Classifying Malware Detecting CampaignsSpotting Deep Fakes

• Detecting misinformation
• Spotting command and control paths
• Cyber training

• Technical debt detection
• Satellite image recognition
• Insider threat detection

33Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Summary: Using AI to Build More Secure Software

Problem: The Need to Build Secure Software
Threat Analysis: What To Protect Against
Code Development: Assisting Programmers to Build More Secure Software
Building AI Systems Securely: Next Generation of Software Face New Attacks

34Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Contact Us

Carnegie Mellon University

Software Engineering Institute

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

info@sei.cmu.edu

www.sei.cmu.edu

mailto:info@sei.cmu.edu
http://www.sei.cmu.edu

	Using AI to Find Security Defects in Code / Build More Secure Software
	Software Cost and Vulnerability Threat to Missions
	Fixing Problems Late Drives Costs, Delays Deployment
	AI in Automatic Programming – The Beginning
	AI in Automatic Programming: Generating Code thru Search – High Assurance SPIRAL
	Using AI For Autocompletion
	Finding Code Defects Using AI: Classifiers & Active Learning
	Finding Code Defects Using AI: Data Quality
	Data Quality: What is Truth?
	Finding Code Defects Using AI: Data Quality
	Data Quality: Lexicon And Rules
	Lexicon: Audit Determinations
	Data Quality: Audit Rules
	FY16-19 My SEI Static Analysis Alert Classification Research
	Finding Code Defects Using AI: Data Quantity & Quality
	Test Suites Used for AI Data Generation: Juliet Initial Data
	FY20 My SEI Static Analysis Alert Classification Research
	Finding Code Defects Using AI: Cross-Project Prediction
	Finding Code Defects – AI that Considers Source Code as Natural Language
	Using AI to Drive Test Inputs – Fuzzing
	Using AI to Improve Penetration Testing
	Automated Program Repair – DARPA Cyber GrandChallenge
	AI Supporting Judgement – IBM Watson to Improve Assurance
	AI Attacks Are Different
	Some Technical Approaches for Defending AI Systems
	AI is Playing an Increasing Role in Cybersecurity
	Summary: Using AI to Build More Secure Software
	Contact Us

