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Software Cost and Vulnerability Threat to Missions

Finding and fixing software flaws late in the acquisition lifecycle drives up cost and 
delays delivery

Latent software defects put missions at risk. Sometimes those defects are exposed 
during operations. 

AI to automate and improve what humans do, to develop and 
analyze code for security, and to secure AI software itself.
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Fixing Problems Late Drives Costs, Delays Deployment
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AI to automate and improve what humans do, to develop and 
analyze code for security, and to secure AI software itself.
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AI in Automatic Programming – The Beginning

“The IBM Mathematical Formula Translating 
System or briefly, FORTRAN, will comprise a 
large set of programs to enable the IBM 704 to 
accept a concise formulation of a problem in 
terms of a mathematical notation and to produce 
automatically a high speed 704 program for the 
solution of the problem.”

Source: J.W. Backus, H. Herrick and I. Ziller, 
https://archive.computerhistory.org/resources/text/Fortran/102679231.05.01.acc.pdf

https://archive.computerhistory.org/resources/text/Fortran/102679231.05.01.acc.pdf
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AI in Automatic Programming: Generating Code thru 
Search – High Assurance SPIRAL

“High Assurance SPIRAL aims to solve 
the last mile problem for the synthesis 
of high assurance implementations of 
controllers for vehicular systems that 
are executed in todays and future 
embedded and high performance 
embedded system processors.”

Sources: Franz Franchetti, José M. F. Moura, Manuela Veloso, Andre Platzer, Soummya Kar, David Padua, Jeremy Johnson, 
Mike Franusich, High Assurance Spiral: Scalable and Performance Portable Domain-Specific Control System Synthesis,  
https://users.ece.cmu.edu/~franzf/hacms.htm; http://www.spiral.net/

https://users.ece.cmu.edu/~franzf/hacms.htm
http://www.spiral.net/
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Using AI For Autocompletion

Safe, correct code could be written 
incrementally
• Using n-grams
• Using deep learning (Generative 

Pretrained Transformer 2)

Sources:
E. Schutte, Autocomplete from StackOverflow, 2016, 
https://emilschutte.com/stackoverflow-autocomplete/

(Jacob Jackson) TabNine, “Autocompletion with deep learning,” July 18, 2019, 
https://tabnine.com/blog/deep

L. Tung, “New tool promises to turbo-charge coding in major programming 
languages,” July 25, 2019, https://www.zdnet.com/article/new-tool-promises-to-
turbo-charge-coding-in-major-programming-languages/

© 2019 TabNine, See https://tabnine.com/eula

https://emilschutte.com/stackoverflow-autocomplete/
https://tabnine.com/blog/deep
https://www.zdnet.com/article/new-tool-promises-to-turbo-charge-coding-in-major-programming-languages/
https://www.zdnet.com/article/new-tool-promises-to-turbo-charge-coding-in-major-programming-languages/
https://www.zdnet.com/article/new-tool-promises-to-turbo-charge-coding-in-major-programming-languages/
https://tabnine.com/eula
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Using classifiers for static analysis alerts
Active learning updates predictions as new data is received.  
• [Ruthruff]: 85% accurate false positive prediction for FindBugs, Logistic Regression, adaptive using code-

fix decisions
• [Heckman] ARM: 

- 81% true positive alerts after investigating only 20% of alerts (vs. avg. of 50 random orderings found 22% after 
investigating 20%)

- Code locality and alert type accuracy (new adjudication feedback)
- Code fixer feedback to system

• [Kremenec] Feedback-Rank 
- 2-8x improvement of performance ratio over random
- Performance ratio: ratio between random and shift per bug from optimal
- Code locality and alert type accuracy (new determinations feedback)

[Heckman] Heckman, Sarah Smith. "Adaptively ranking alerts generated from automated static analysis.“, Crossroads, 2007.
[Heckman B] S. Heckman, L. Williams, On establishing a benchmark for evaluating static analysis alert prioritization and classification techniques, Empirical Software 
Engineering and Measurement, 2008, pp. 41–50.
[Kremenec] T. Kremenek, K. Ashcraft, J. Yang, D. Engler, Correlation exploitation in error ranking, FSE, 2004, pp.83–93.
[Ruthruff] J. Ruthruff et al. "Predicting accurate and actionable static analysis warnings: an experimental approach." ICSE, 2008.

Finding Code Defects Using AI: Classifiers & Active Learning
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Finding Code Defects Using AI: Data Quality
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Finding Code Defects Using AI: Data Quality
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Finding Code Defects Using AI: Data Quality

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data
Use the training data to 
build machine learning 
classifiers that predict 
TRUE and FALSE 
determinations for new 
alerts



14Using AI to Find Security Defects in Code / Build More Secure Software
© 2020 Carnegie Mellon University

Approved for Public Release

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data

Finding Code Defects Using AI: Data Quality
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One collaborator reported using the determination 
True to indicate that the issue reported by the alert 
was a real problem in the code.

Another collaborator used True to indicate that 
something was wrong with the diagnosed code, 
even if the specific issue reported by the alert was 
a false positive!

Data Quality: What is Truth?
Finding Code Defects Using AI: Data Quality

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)
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Data Quality: Lexicon And Rules

• We developed a lexicon and auditing rule set for our 
collaborators

• Includes a standard set of well-defined determinations 
for static analysis alerts

• Includes a set of auditing rules to help auditors make 
consistent decisions in commonly-encountered situations

Finding Code Defects Using AI: Data Quality

Different auditors should make the same determination for 
a given alert

Improve the quality and consistency of audit data for the 
purpose of building machine learning classifiers

Help organizations make better-informed decisions about 
bug-fixes, development, and future audits.

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)
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Lexicon: Audit Determinations

Supplemental Determinations
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Finding Code Defects Using AI: Data Quality

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)
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Data Quality: Audit Rules

Goals
• Clarify ambiguous or complex auditing scenarios
• Establish assumptions auditors can make 
• Overall: help make audit determinations more consistent

We developed 12 rules
• Drew on our own experiences auditing code bases at CERT
• Trained 3 groups of engineers on the rules, and incorporated their feedback

Finding Code Defects Using AI: Data Quality

D. Svoboda, L. Flynn, and W. Snavely. "Static Analysis Alert Audits: Lexicon & Rules." 2016 IEEE Cybersecurity Development (SecDev)
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FY16-19 My SEI Static Analysis Alert Classification Research

FY16
• Issue addressed: classifier 

accuracy
• Novel approach: multiple 

static analysis tools as 
features

• Result: increased accuracy

FY17
• Issues addressed: data 

quality, too little labeled 
data for accurate classifiers 
for some conditions (e.g., 
CWEs, coding rules)

• Novel approach: audit 
rules+lexicon, use test 
suites to automate the 
production of labeled 
(True/False) meta-alert data* 
for many conditions

• Result: high precision for 
more conditions 

FY18-19
• Issue addressed: little use of 

automated alert classifier 
technology (requires $$, 
data, experts)

• Novel approach: develop 
extensible architecture with 
novel test-suite data method

• Result: enabled wider use of 
classifiers (less $$, data, 
experts) with extensible 
architecture, API, software to 
instantiate architecture, and 
adaptive heuristic research 

Goal: Enable practical automated classification, so all meta-alerts can be addressed.           

• * By the end of FY18, ~38K new labeled (T/F) alerts from eight SA tools on the Juliet test suite  (vs.   ~7K from CERT audit archives over 10 years)
• L. Flynn publications at SEI Digital Library: https://resources.sei.cmu.edu/library/author.cfm?authorid=31216

https://resources.sei.cmu.edu/library/author.cfm?authorid=31216
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Finding Code Defects Using AI: Data Quantity & Quality

CERT- Audited Archives Characterization
• 58 CERT coding rules with 20 or more 

audited (labeled) alerts
• 25 rules all (or nearly all) determined 

one way (True or False)
• Other 324 CERT rules have little or no 

labeled data
• Labeled data for 158 of 382 CERT rules
• 2,487 True and 4,980 False

L. Flynn et al. “Prioritizing Alerts from Multiple Static Analysis Tools, Using Classification Models”, Software QUAlities and their Dependencies 
(SQUADE, ICSE 2018 workshop). https://resources.sei.cmu.edu/asset_files/ConferencePaper/2018_021_001_524697.pdf

https://resources.sei.cmu.edu/asset_files/ConferencePaper/2018_021_001_524697.pdf
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Test Suites Used for AI Data Generation: Juliet Initial Data

Alert Type Labeled Meta-alert (counts 
a fused alert once)

TRUE 13,330
FALSE 24,523

Big savings: manual audit of 37,853 alerts from non-test-suite 
programs would take an unrealistic minimum of 1,230 hours 
(117 seconds per alert audit*).

• First 37,853 alert audits wouldn’t cover many conditions 
(and sub-conditions) covered by the Juliet test suite! 

• Need true and false labels for classifiers.
• Realistically: enormous amount of manual auditing time to 
develop that much data.

These are initial metrics (more data to follow as we use more 
tools and test suites).

Lots of new data for 
creating classifiers

(37,853 labeled alerts)

• L. Flynn and Z. Kurtz. “Using Test Suites for Static Analysis Alert Classifiers”, https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=526030
• *Nathaniel Ayewah and William Pugh, "The Google FindBugs Fixit," Proceedings of the 19th International Symposium on Software Testing and Analysis, ACM, 2010.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=526030
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FY20 My SEI Static Analysis Alert Classification Research

• Issue addressed: It takes too much time to adjudicate static analysis alerts/meta-alerts during 
continuous integration (CI).   

• Novel approach: During CI builds, use classifiers with precise cascading and CI/CD features 
• Results: 

- Design for CI-SCAIFE system integration
- Cascading API defined, for true/false adjudications ‘cascade’ to subsequent versions of code 
- Less-precise cascading implemented, test results  
- Significant progress on CI-SCAIFE system integration development
- Deployment and testing by DoD collaborators (multiple rounds), & public API + code subset publications  

• Also: RC_Data open dataset for improved classifier research. Published our own data to begin,  
plan to grow, with our data and data from others. University of Virginia plans to add data.  

Goal: Enable practical automated classification, so all meta-alerts can be addressed.          

Lori Flynn, Ebonie McNeil, and Matt Sisk. “Open Dataset RC_Data for Classifier Research”, 
https://wiki.sei.cmu.edu/confluence/display/seccode/Open+Dataset+RC_Data+for+Classifier+Research
L. Flynn, E. McNeil, J. Yankel. “How to Instantiate SCAIFE API Calls: Using SEI SCAIFE Code, the SCAIFE API, Swagger-Editor, and Developing Your Tool with Auto-Generated 
Code”, https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354
Lori Flynn. “Managing Static Analysis Alerts with Efficient Instantiation of the SCAIFE API into Code and an Automatically Classifying System” 
https://insights.sei.cmu.edu/author/lori-flynn/

https://wiki.sei.cmu.edu/confluence/display/seccode/Open+Dataset+RC_Data+for+Classifier+Research
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644354
https://insights.sei.cmu.edu/author/lori-flynn/
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Cross-project defect prediction:
• Compares 2 types of unsupervised classifiers compared to manual efforts to 
make homogenous datasets. Connectivity-based classification using spectral 
clustering worked well (but supervised better). [Baishakhi]

• 9% improvement in cross-project defect prediction, using semantic features 
[Wang]

• At SEI, ongoing work on cross-project prediction and active learning with mix of 
test suite and natural program data [Flynn]

[Baishakhi] Ray, Baishakhi, et al. "On the naturalness of buggy code." ICSE, 2016.
[Flynn] L. Flynn and Z. Kurtz. “Using Test Suites for Static Analysis Alert Classifiers”, https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=526030
[Wang] Wang, Song, Taiyue Liu, and Lin Tan. "Automatically learning semantic features for defect prediction." ICSE, 2016. 
[Zhang] Zhang, Feng, et al. "Cross-project defect prediction using a connectivity-based unsupervised classifier." ICSE, 2016.

Finding Code Defects Using AI: Cross-Project Prediction

https://resources.sei.cmu.edu/library/asset-view.Using
https://resources.sei.cmu.edu/library/asset-view.Using
https://resources.sei.cmu.edu/library/asset-view.Using
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Finding Code Defects – AI that Considers Source Code 
as Natural Language

Analyze Source Code for Insecure Coding
• Supplements Compiler-style Checking
• Treats Programs Like Natural Language

Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic 
features for defect prediction. In Proceedings of the 38th International 
Conference on Software Engineering (ICSE '16). ACM, New York, NY, USA, 
297-308. DOI: https://doi.org/10.1145/2884781.2884804 

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: 
learning distributed representations of code. Proc. ACM Program. Lang. 3, 
POPL, Article 40 (January 2019), 29 pages. DOI: 
https://doi.org/10.1145/3290353 

Sources: Carson D. Sestili, William S. Snavely, Nathan M. VanHoudnos, 
Towards security defect prediction with AI, Sep 12, 2018, 
https://arxiv.org/abs/1808.09897

https://arxiv.org/abs/1808.09897
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/3290353
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Using AI to Drive Test Inputs – Fuzzing

“Fuzzing:” Generating and Testing Random Inputs
Original: Random or Deterministic
Now: Use AI to Guide Generation of Sample Inputs

D. She, K. Pei, D. Epstein, J. Yang, B. Ray, S. Jana, “NEUZZ: Efficient Fuzzing with Neural 
Program Smoothing,” 40th IEEE Symposium on Security and Privacy, May 20--22, 2019, San 
Francisco, CA, USA, https://arxiv.org/pdf/1807.05620.pdf

G. Yan, J. Lu, Z. Shu ; Y. Kucuk, “ExploitMeter: Combining Fuzzing with Machine Learning for 
Automated Evaluation of Software Exploitability,” 2017 IEEE Symposium on Privacy-Aware 
Computing (PAC), 1-4 Aug. 2017, https://doi.org/10.1109/PAC.2017.10

Sources: A. Householder, Announcing CERT Basic Fuzzing Framework Version 2.8, Oct. 5, 
2016, https://insights.sei.cmu.edu/cert/2016/10/announcing-cert-basic-fuzzing-framework-bff-
28.html

https://insights.sei.cmu.edu/cert/2016/10/announcing-cert-basic-fuzzing-framework-bff-28.html
https://insights.sei.cmu.edu/cert/2016/10/announcing-cert-basic-fuzzing-framework-bff-28.html
https://doi.org/10.1109/PAC.2017.10
https://arxiv.org/pdf/1807.05620.pdf
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Variety and combination of manual techniques can be 
executed by an AI system
• AI planning using an attack graph against attack 

surfaces
• Markov Decision Process (or Partially Observable 

Markov Decision Process) over application state
• Reinforcement learning

Using AI to Improve Penetration Testing

Sources: 

K. Durkota  and V. Lisy,  “Computing Optimal Policies for Attack Graphs with Action Failures and Costs,” 
Conference: Proceedings of the 7th Starting AI Researchers' Symposium (STAIRS), December 2013, 
https://www.researchgate.net/profile/Karel_Durkota/publication/273640839_Computing_Optimal_Policies_for_Atta
ck_Graphs_with_Action_Failures_and_Costs

C. Sarraute, O. Buffet, and J. Hoffmann, “POMDPs Make Better Hackers: Accounting for Uncertainty in 
Penetration Testing,” AAAI, 2012, https://arxiv.org/pdf/1307.8182

J. Schwartz, “Autonomous Penetration testing using Reinforcement Learning, Nov 16, 2018, 
https://arxiv.org/ftp/arxiv/papers/1905/1905.05965.pdf

https://www.researchgate.net/profile/Karel_Durkota/publication/273640839_Computing_Optimal_Policies_for_Atta
https://arxiv.org/pdf/1307.8182
https://arxiv.org/ftp/arxiv/papers/1905/1905.05965.pdf
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Automated Program Repair – DARPA Cyber Grand 
Challenge

“Mayhem” demonstrated automated 
cyber defense

• Detect attack on program
• Analyze changes to program
• Deploy updated software

Source: DARPA, “Mayhem” Declared Preliminary Winner of Historic Cyber Grand Challenge, Aug 4, 2016, 
https://www.darpa.mil/news-events/2016-08-04

https://www.darpa.mil/news-events/2016-08-04
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AI Supporting Judgement – IBM Watson to Improve 
Assurance

• Acquisition programs generate 
voluminous documentation

• Assurance is based on assembling and 
reviewing relevant evidence from 
documents

• Finding appropriate evidence or 
explanations can be challenging

• SEI proof of concept

Source: Mark, Sherman, Verifying Software Assurance with IBM’s Watson, https://www.youtube.com/watch?v=aW3497xhypY, Sep 11, 2017

https://www.youtube.com/watch?v=aW3497xhypY
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AI Attacks Are Different
Feature Differentiation

“Milla Jovovich”

Pixel Manipulation

“Milla Jovovich”

$0.22 to print

Source: Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016. Accessorize to a Crime: Real and Stealthy Attacks on State-of-
the-Art Face Recognition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS '16). ACM, New 
York, NY, USA, 1528-1540. DOI: https://doi.org/10.1145/2976749.2978392

Source: Athalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2017, July 24). 
Synthesizing Robust Adversarial Examples. arXiv [cs.CV]. Retrieved from 
http://arxiv.org/abs/1707.07397

https://doi.org/10.1145/2976749.2978392
http://arxiv.org/abs/1707.07397
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Engineering Defenses
Su et al. (2018) empirically 
demonstrates robustness/accuracy 
trade off in ImageNet models
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Some Technical Approaches for Defending AI Systems

Training Defenses
Wong & Kolter (2017) 
output bound

Causal Defenses
Tsipras et al. (2018) 
adversarial data augmentation

Turtle           Bird

Sources: 
Wong, E., & Kolter, J. Z. (2017). Provable defenses against adversarial examples via the convex outer adversarial polytope. ArXiv:1711.00851 [Cs, Math]. Retrieved from 
http://arxiv.org/abs/1711.00851; 
Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2018). Robustness May Be at Odds with Accuracy. ArXiv:1805.12152 [Cs, Stat]. Retrieved from 
http://arxiv.org/abs/1805.12152; 
Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., & Gao, Y. (2018). Is Robustness the Cost of Accuracy? – A Comprehensive Study on the Robustness of 18 Deep Image 
Classification Models. ArXiv:1808.01688 [Cs]. Retrieved from http://arxiv.org/abs/1808.01688;  
Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D. Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM workshop on 
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AI is Playing an Increasing Role in Cybersecurity

Landscape Tickets
Inference

cGAN(Tom’s 
features)

Tom Tom’s 
features

Classifying Malware Detecting CampaignsSpotting Deep Fakes

• Detecting misinformation
• Spotting command and control paths
• Cyber training

• Technical debt detection
• Satellite image recognition
• Insider threat detection
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Summary: Using AI to Build More Secure Software

Problem: The Need to Build Secure Software
Threat Analysis: What To Protect Against
Code Development: Assisting Programmers to Build More Secure Software
Building AI Systems Securely: Next Generation of Software Face New Attacks
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