Carnegie Mellon University Software Engineering Institute

Cybersecurity Data Science (CSDS) Best Practices in an Emerging Profession

Scott Allen Mongeau

Cybersecurity Data Scientist – SAS Institute PhD candidate - Nyenrode Business University (Netherlands)

s.mongeau@edp1.nyenrode.nl scott.mongeau@sas.com

@SARK7 #CSDS2020 #FloCon2020

PhD academic research / book
~June 2020 release

Research on cybersecurity data science (CSDS) as an emerging profession

I. <u>Literature</u>: What is CSDS and is it a profession?

II. Interviews: 50 CSDS practitioners

III. <u>Designs</u>: Approaches to address challenges

Cybersecurity Data Science: Best Practices in an Emerging Profession

Scott Mongeau

Springer

I. CSDS Literature

Copyright © 2019 Scott Mongeau All rights reserved.

FUD Fear, Uncertainty, Doubt

Expansion of exposure and targets >!< Increasing sophistication, frequency, and speed of attacks

Castle and Moat

How quaint!



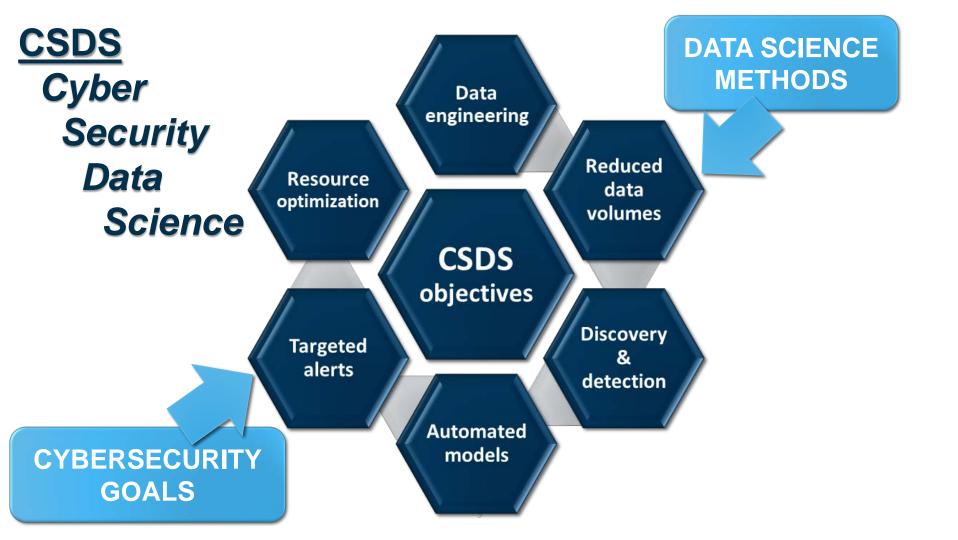
"Bad news, Your Majesty—it's a cyberattack."

1000

Data Science

New hope amidst complexity and confusion...

AGAIN 7 and U.



<u>CSDS</u>: Existing Professionals + Demonstrated Efficacy



* Survey of 621 global IT security practitioners

defenses-108679.html

'Professional Maturity' Comparison

#	CRITERIA	CYBER	DS	CSDS		CYBER =
1	Broad interest	•	•	•		Growing challenges +
2	People employed	•	•	•		rapid paradigm shift
3	Informal training	•	•	O		
4	Informal groups	•	•	O		
5	Professional literature	•	•	•		DATA SCIENCE =
6	Research literature	٢	J			Poorly defined standa "whatever you want it to
7	Formal training	•		o		whatever you want it to
8	Formal prof. groups	•	O	0		
9	Professional certificates	•	O	0		
10	Standards bodies	•	0	0		CSDS = At risk problem child?
11	Academic discipline	•	O	0	<u>ا</u>	At tisk problem childs

The Blessing and Curse of Data Science

PROS

- Commercial interest
 - Range of methods
- Freedom to experiment
 - Delivers efficiencies
 - Big data engineering
 - Insightful questions
- Power of machine learning

CONS

- 🔶 Hype & noise
 - Befuddling array of approaches
 - Lack of standards
 - Myth of automation
 - Big data ipso facto is not solution
 - Wait, what is the question?
 - "Throwing the statistical baby out with grampa's bathwater?"

II. CSDS Interviews

Copyright © 2019 Scott Mongeau All rights reserved.

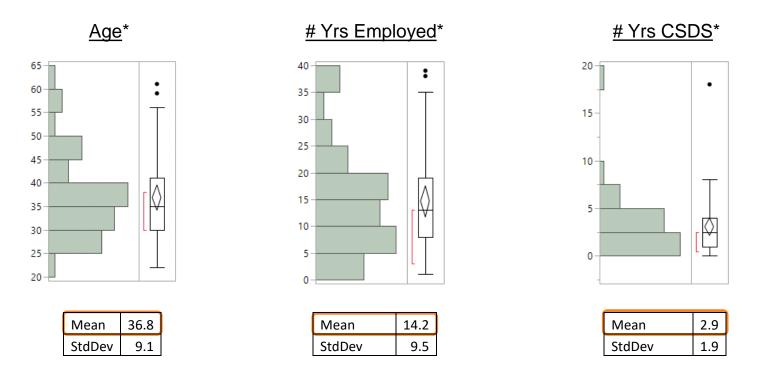
CSDS Practitioner Interviews

30 minutes per interviewee

- **<u>ENTRY</u>**: How did you become involved in domain?
- What are perceived central **CHALLENGES**?
- What are key **BEST PRACTICES**?

Demographic Profile (n=50)

LinkedIn => 350 candidates => 50 participants



* Estimates inferred from LinkedIn profile data

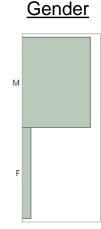
Demographic Profile (n=50)

Current Region

Current Region ¹	n	%
North America	35	70%
Western Europe	10	20%
Eastern Europe	2	4%
Middle East	2	4%
South America	1	2%

22% (n=11) relocated from native region 18% (n=9) relocated to US specifically 10% (n=5) relocated specifically from Asia/Pacific to US

Industry	n	%
Software and services	28	56%
Consulting	7	14%
Finance/financial		
services/insurance	7	14%
Government / military	3	6%
Consumer products	2	4%
Academics / research	2	4%
Telecom	1	2%



Gender	n	%
Male	43	86%
Female	7	14%

DATA PREPARATION! 84%

Marketing hype 70%

Establishing context 60%

Labeled incidents (evidence) 56%

CSDS 'CHALLENGES': 11

CODED RESPONSES: Perceived Challenges	Ν	%	0%	50%	100%
CH1: Data preparation (access, volume, integration, quality, transformation, selection)	42	84%			
CH2: Unrealistic expectations proliferated by marketing hype	35	70%			
CH3: Contextual nature of normal versus anomalous behavioral phenomenon	30	60%			
CH4: Lack of labeled incidents to focus detection	28	56%			
CH5: Own infrastructure, shadow IT, and proliferation of exposure	27	54%			
CH 6: Uncertainty leads to ineffective reactive stance	25	50%			
CH 7: Traditional rules-based methods result in too many alerts	25	50%			
CH 8: Program ownership, decision making, and processes	20	40%			
CH 9: Resourcing, developing, & hosting in house	16	32%			
CH 10: Expanding breadth and complexity of cyber domain	16	32%			
CH 11: Policy, privacy, regulatory, and fines	15	30%			

CSDS 'BEST PRACTICES': 26

DATA PREPARATION! 84%

			<u> </u>
RESPONSES: Advoca ed best practices	Family	Ν	
BP1: Structured data preparation, discovery,	Proc	42	84%
engineering process			
BP2: Building process focused cross-functional team	Org	38	76%
BP3: Cross-training team in data science, cyber,	Org	37	74%
engineering	Org	57	7470
BP4: Scientific method as a process	Proc	34	68%
BP5: Instill core cyber domain knowledge	Org	33	66%
BP6: Vulnerability, anomaly & decision	Tech	33	66%
automation to operational capacity			
BP7: Data normalization, frameworks & ontologies	Tech	32	64%
BP8: Model validation and transparency	Proc	31	62%
BP9: Data-driven paradigm shift away from rules & signatures	Org	29	58%
BP10: Track and label incidents and exploits	Proc	28	56%
BP11: Cyclical unsupervised and supervised machine learning	Proc	25	50%
BP12: Address AI hype and unrealistic expectations directly	Org	23	46%
BP13: Understand own infrastructure & environment	Org	23	46%

C	colla	abc	orati	on 7	6%	
			%	50%	100	%
2	84%					-
3	76%					
7	74%					
ļ	68%					
3	66%					
3	66%					
2	64%					
L	62%					
)	58%					
3	56%					
5	50%					
3	46%					
3	46%					
						_

Cross-domain

Scientific rigor 68%

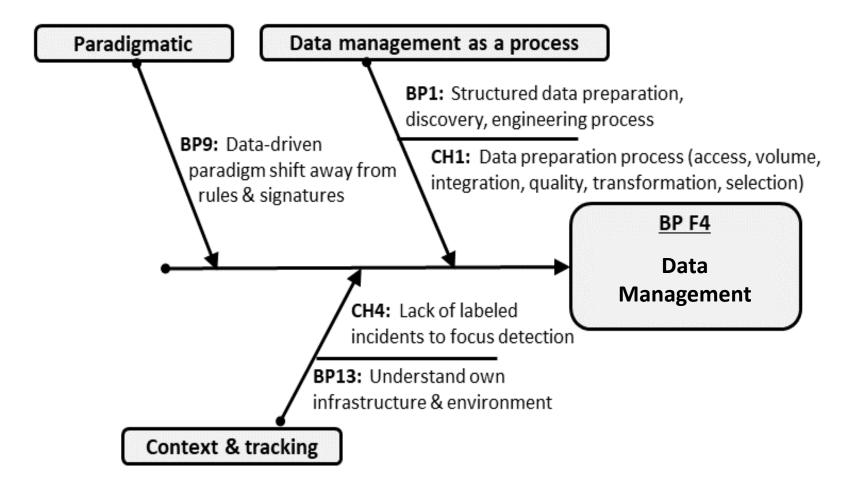
SPONSES: Advocated best practices Family	N S	% 0	%	50%	100%
BP14: Cloud and container-based tools and data storage	Tech	22	44%		
BP15: Distinct exploration and detection architectures	Tech	22	44%		
BP16: Participate in data sharing consortiums and initiatives	Tech	21	42%		
BP17: Deriving probabilistic and risk models	Org	20	40%		
BP18: Upper management buy in and support	Org	16	32%		
BP19: Human-in-the-loop reinforcement	Proc	14	28%		
BP20: Survey academic methods and techniques	Org	13	26%		
BP21: Cyber risk as general enterprise risk & reward	Org	12	24%		
BP22: Segment risk programmatically and outsource components	Org	9	18%		
BP23: Adding machine learning to SIEM	Tech	5	10%		
BP24: Preventative threat intelligence	Org	4	8%		•
BP25: Hosting and pushing detection to endpoints	Tech	4	8%		
BP26: Honeypots to track and observe adversaries	Tech	2	4%		

18

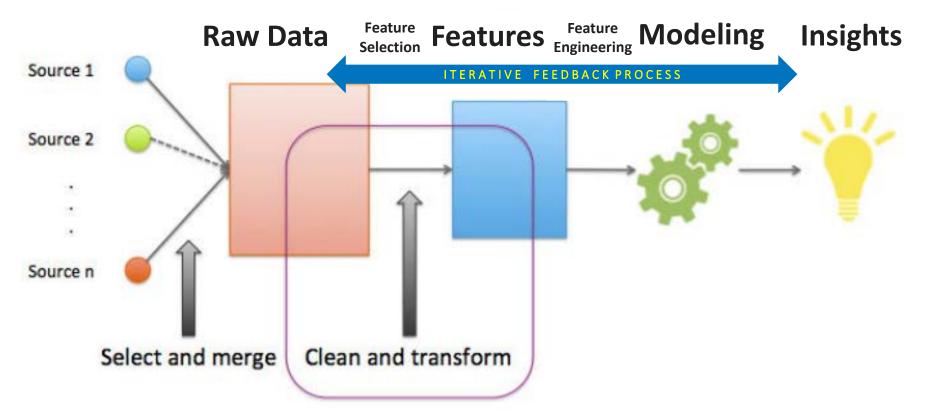
KEY CSDS GAPS: Factor-to-Factor Fitting

III. CSDS Designs

Copyright © 2019 Scott Mongeau All rights reserved.

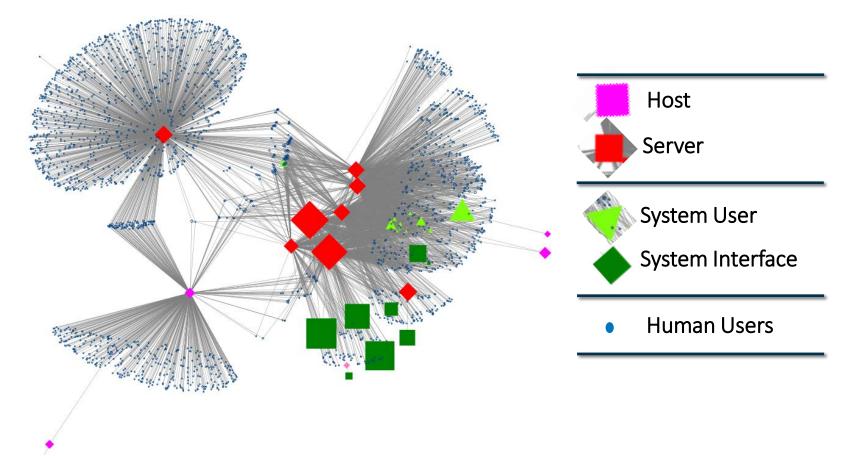


Data Management: EDA Process + Feature Engineering

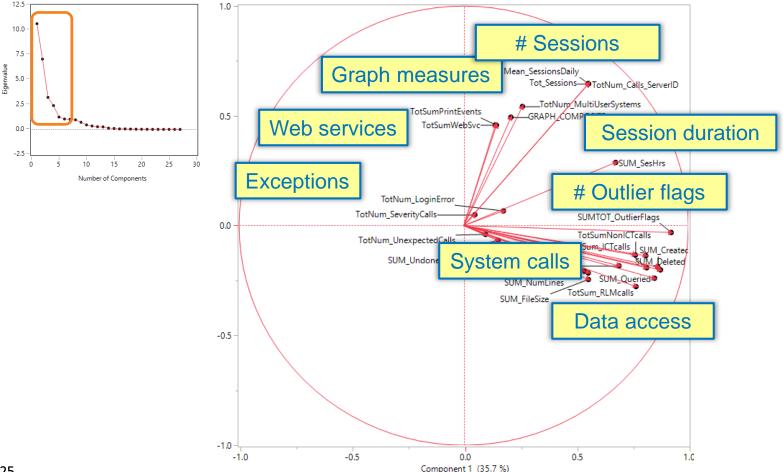


SOURCE: Alice Zheng, Amanda Casari. 2016. Feature Engineering for Machine Learning Models. O'Reilly Media.

Featurization: Example - Graph Analytics



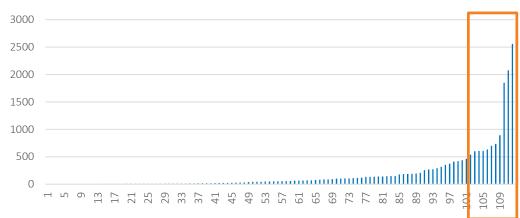
Feature Reduction: Example - Principal Component Analysis (PCA)

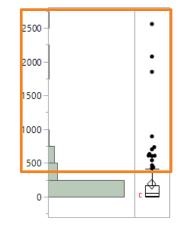


Exploratory Data Analysis (EDA): Example – Probabilistic Analysis

Exception Events

Exception messages per user (ranked)

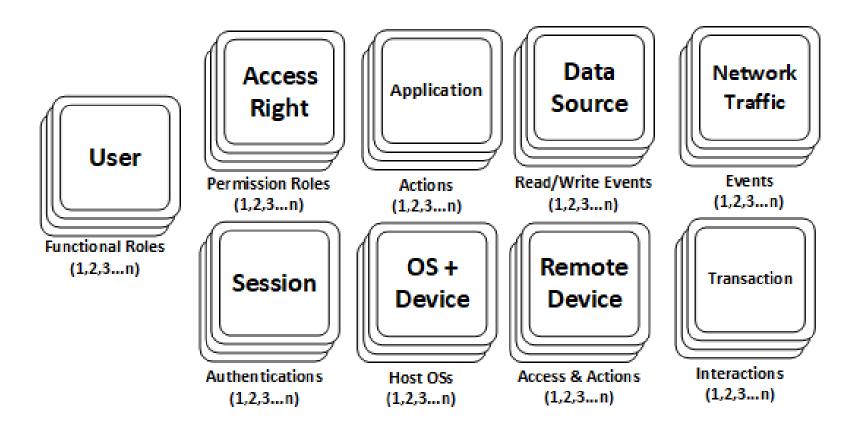


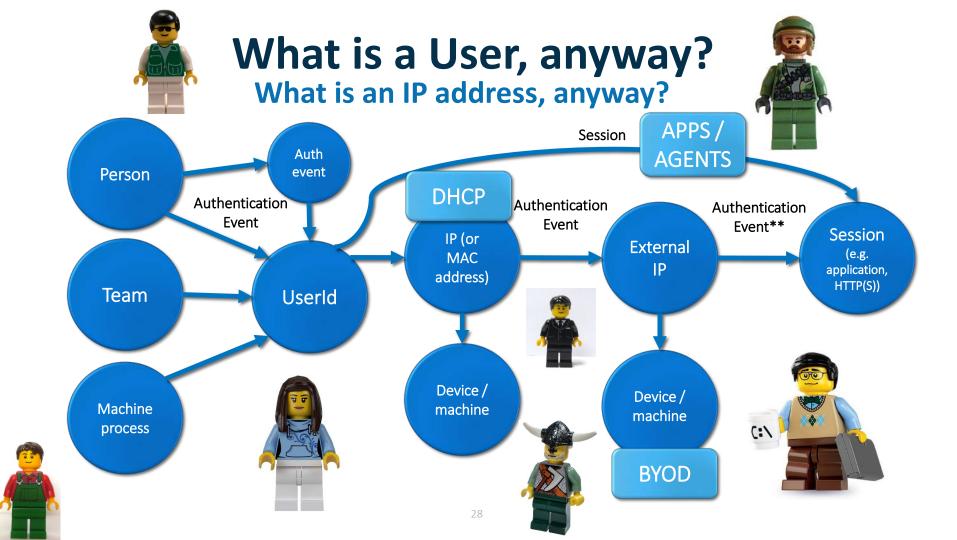


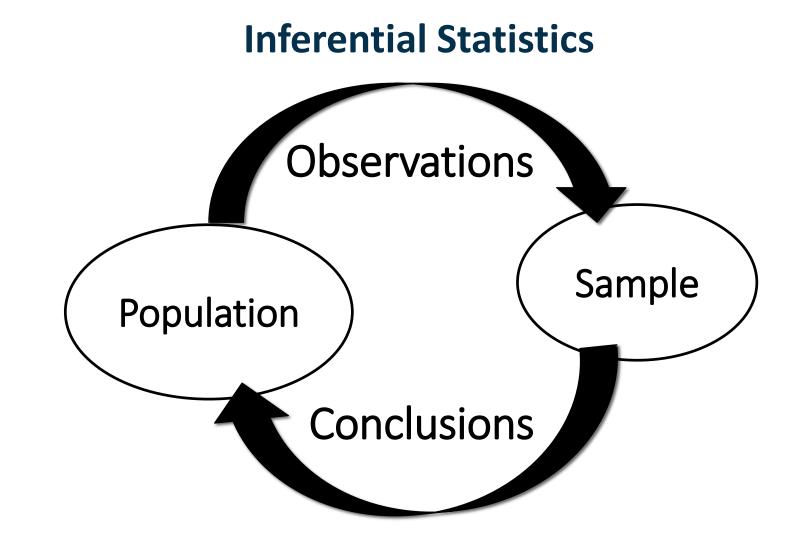
Quant	Quantiles					
100.0%	maximum	2559				
99.5%		2559				
97.5%		1889.725				
90.0%		517.5				
75.0%	quartile	172.75				
50.0%	median	55.5				
25.0%	quartile	9.75				
10.0%		3.3				
2.5%		1.825				
0.5%		1				
0.0%	minimum	1				

Summary Statistics				
Mean	184.01786			
Std Dev	380.96684			
Std Err Mean	35.997982			
Upper 95% Mean	255.35026			
Lower 95% Mean	112.68545			
N	112			

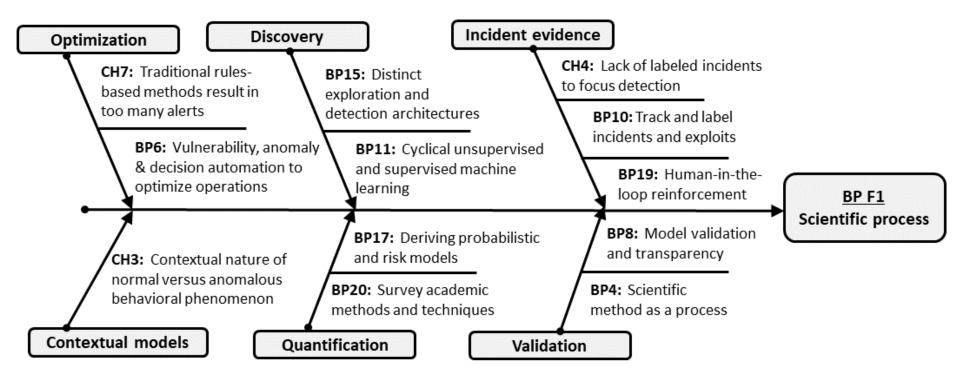
Entity Resolution







Root Cause Analysis: Fishbone / Ishikawa Diagram



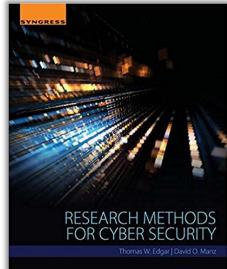
* Resulting from factor analysis and factor-to-factor fitting

CSDS: What type of science is it?

Controlled experiments versus Pattern extrapolation

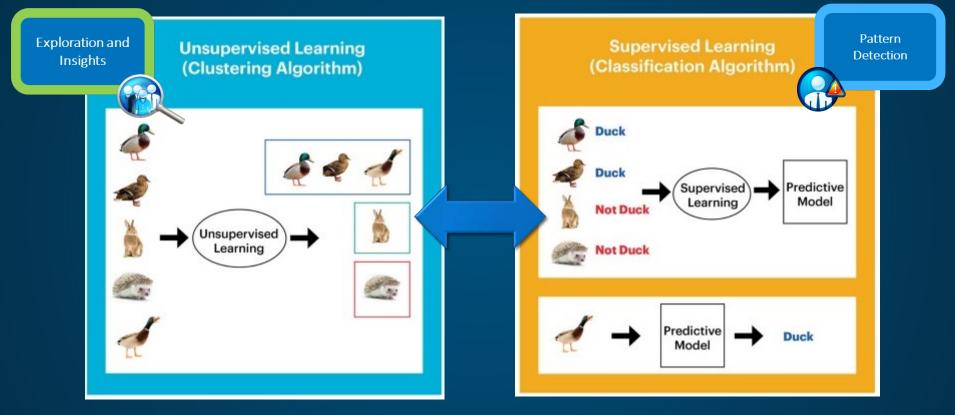
Research Methods for Cybersecurity

- Experimental
 - i.e. hypothetical-deductive and quasi-experimental
- Applied
 - i.e. applied experiments and observational studies
- Mathematical
 - ➢ i.e. theoretical and simulation-based
- Observational
 - i.e. exploratory, descriptive, machine learning-based



Manz, D. and Edgar, T. (2017) Research Methods for Cyber Security

Discovery \Leftrightarrow **Detection**



SEGMENTATION

CATEGORIZATION

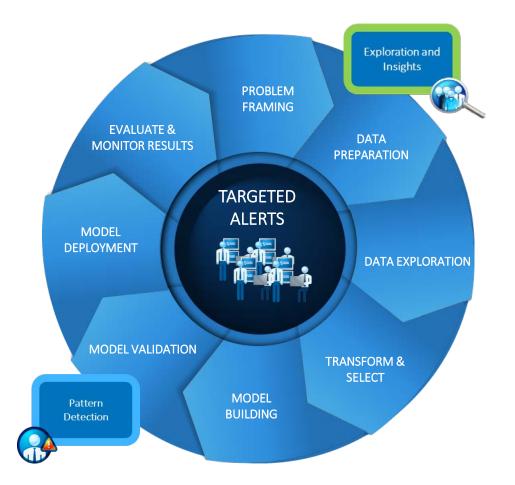
Labels: What constitutes 'evidence'?

EXAMPLES OF SECURITY EVIDENCE

(Field avidance	- Rules &
σ	- Field evidence	
te	- Probing &	signatures
ec	testing	- Research &
Collected	- 3 rd party	threat
0	sourced	intelligence
ed		
Synthesized	- Red Teaming	- Expert opinion
he	- Simulations	- Thought
ynt	- Laboratory	experiments
S		
	Inductive	Deductive

- 1. Field evidence (e.g. observed incidents)
- 2. Sourcing own data from field testing (e.g. local experiments)
- 3. Honeypots
- 4. IDSs (Intrusion Detection Systems)
- 5. Simulation findings
- 6. Laboratory testing (e.g. malware in a staged environment)
- 7. Stepwise discovery (iterative interventions)
- 8. Pen testing (attempts to penetrate the network)
- 9. Red teaming (staged attacks to achieve particular goals)
- 10. Incidents (records associated with confirmed incidents)
- 11. Reinforcement learning (self-improving ML to achieve a goal)
- 12. Research examples (datasets recording attacks from research)
- 13. Expert review (opinion and guidance from experts)
- 14. Intelligence feed (indications from a 3rd party service)
- 15. Thought experiments (e.g. boundary conditions, counterfactuals)

CSDS as a **Process: Discovery and Detection**

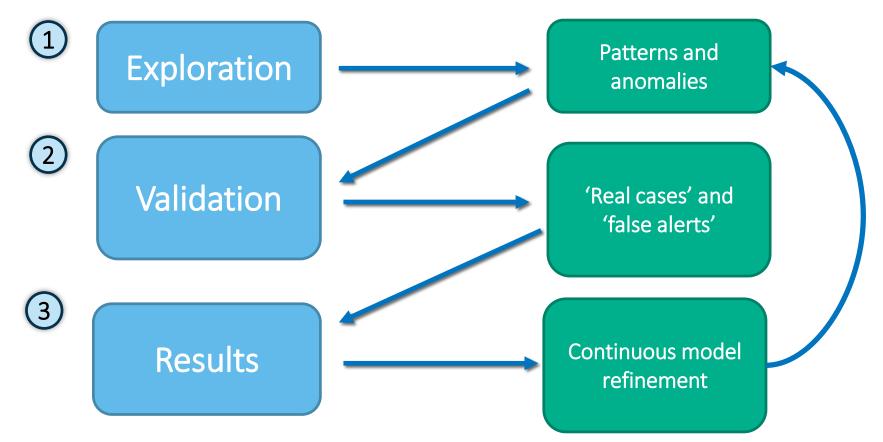


BP16: Participate in data		ertainty H10: Expanding breadth complexity of domain CH6: Uncertainty leads to reactive stance CH5: Own infrastructure, shadow IT, exposure	<u>BP F2</u>
m CH9 deve	eloping, hosting in house	 BP2: Building process focused cross-functional team BP3: Cross-training team in DS, cyber, engineering cource coordination 	Cross-domain collaboration

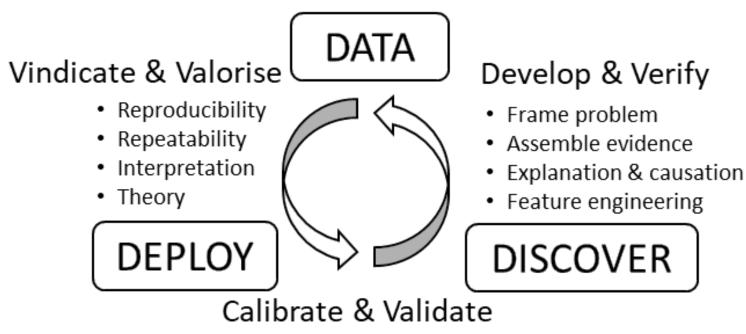
CSDS: High-Level Functional Process



Continuous Detection Improvement Process



CSDS Model Development Process



- Conceptual model
- Hypotheses
- Counterfactuals
- Falsification

Conclusions

Copyright © 2019 Scott Mongeau All rights reserved.

CSDS: A Work in Progress

Process of Professionalization

- Named professionals
- Set of methods and techniques
- Standards, best practices

Training programs

Certifications

Academic degree programs Focused research journals

Formal sub-specialization

Specialist Researcher Primary Care Surgeon Diagnostician Emergency Care

APPENDIX

Copyright © 2019 Scott Mongeau All rights reserved.

References

- Aggarwal, C. (2013). "Outlier Analysis." Springer. <u>http://www.springer.com/la/book/9781461463955</u>
- Kirchhoff, C., Upton, D., and Winnefeld, Jr., Admiral J. A. (2015 October 7). "Defending Your Networks: Lessons from the Pentagon." Harvard Business Review. Available at https://www.sas.com/en_us/whitepapers/hbr-defending-your-networks-108030.html
- Longitude Research. (2014). "Cyberrisk in banking." Available at <u>https://www.sas.com/content/dam/SAS/bp_de/doc/studie/ff-st-longitude-research-cyberrisk-in-banking-2316865.pdf</u>
- Ponemon Institute. (2017). "When Seconds Count: How Security Analytics Improves Cybersecurity Defenses." Available at https://www.sas.com/en_us/whitepapers/ponemon-how-security-analytics-improves-cybersecurity-defenses-108679.html
- SANS Institute. (2015). "2015 Analytics and Intelligence Survey." Available at https://www.sas.com/en_us/whitepapers/sans-analytics-intelligence-survey-108031.html
- SANS Institute. (2016). "Using Analytics to Predict Future Attacks and Breaches." Available at <u>https://www.sas.com/en_us/whitepapers/sans-using-analytics-to-predict-future-attacks-breaches-108130.html</u>
- SAS Institute. (2016). "Managing the Analytical Life Cycle for Decisions at Scale." Available at https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf
- SAS Institute. (2017). "SAS Cybersecurity: Counter cyberattacks with your information advantage." Available at https://www.sas.com/en_us/software/fraud-security-intelligence/cybersecurity-solutions.html
- SAS Institute. (2019). "Data Management for Artificial Intelligence." Available at <u>www.sas.com/en_us/whitepapers/data-management-artificial-intelligence-109860.html</u>
- Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at https://www.sas.com/en_th/whitepapers/analyze-this-108217.html
- UBM. (2016). "Dark Reading: Close the Detection Deficit with Security Analytics." Available at <u>https://www.sas.com/en_us/whitepapers/close-detection-deficit-with-security-analytics-108280.html</u>

CSDS Definition

- The practice of data science...
- to assure the continuity of digital devices, systems, services, software, and agents...
- in pursuit of the stewardship of systemic cybersphere stability,...
- spanning technical, operational, organizational, economic, social, and political contexts

CSDS Curriculum Design I

- 1.0 Introduction to the CSDS field 1.1. Cybersecurity basics and challenges
 - 1.2. Data science basics and challenges
 - 1.3. CSDS as a focused hybrid domain
 - 1.4. Differentiating analytics goals and methods
 - 1.5. Framing the cybersecurity analytics lifecycle
 - 1.6. Introducing cybersecurity analytics maturity

- 2.0 Cybersecurity data: challenges, sources, features, methods
 - 2.1. Sources of cybersecurity data, research datasets, types of evidence
 - 2.2. Examples: log files and network traffic
 - 2.3. Data preparation, quality, and processing
 - 2.4. Statistical exploration and analysis (EDA)
 - 2.5. Feature engineering and selection
 - 2.6. Feature extraction and advanced methods
 - 2.7. Positioning and handling real-time and streaming data

CSDS Curriculum Design II

- 3.0 Exploration and discovery: pattern extraction, segmentation, baselining, and anomalies
 - 3.1. Building contextual knowledge
 - 3.2. Segmentation and categorization
 - 3.3. Multivariate analysis
 - 3.4. Parameterization and probability
 - 3.5. Outliers and differentiating normal from abnormal
 - 3.6. Anomaly types, anomaly gain, and detection
 - 3.7. Unsupervised machine learning
 - 3.8. Establishing a foundation for prediction

- 4.0 Prediction and detection: models, incidents, and validation
 - 4.1. Distinguishing explanation versus prediction
 - 4.2. Framing detective analytics: combining explanation and prediction
 - 4.3. Econometric approaches
 - 4.4. Predictive machine learning (supervised machine learning)
 - 4.5. Deep learning
 - 4.6. Reinforcement learning
 - 4.7. Model diagnostics and management
 - 4.8. Bootstrapping detection: semi-supervised machine learning

CSDS Curriculum Design III

• 5.0 Operationalization: CSDS as-a-process

- 5.1. Analytics process management: integrating discovery and detection
- 5.2. Human-in-the-loop: integrating investigations and investigative feedback
- 5.3. Robo-automation, online machine learning, and self-improving processes
- 5.4. Technical and functional architectures
- 5.5. Systems integration and orchestration
- 5.6. Cybersecurity analytics maturity recap
- 5.7. Cybersecurity risk and optimization
- 5.8. Guidance on implementing CSDS programs