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Carnegie Mellon Leads an Ecosystem of 
Innovation for Cybersecurity

CMU Software Engineering Institute (SEI)
• Founded in 1984 by the DoD as a Federally-Funded Research and Development Center 

(FFRDC) focused on software engineering

• Leader in software engineering, cybersecurity, and artificial intelligence research

• Established CERT in 1988

• About $145M annual funding (~$23M DoD Line)

• Critical to the DoD ability to acquire, develop, operate, and sustain software systems that 
are innovative, affordable, trustworthy, and enduring (CMU SEI Sponsoring Agreement)

CMU Campus – Global Research University
• Global research university known for its world-class, interdisciplinary programs in 

computer science, machine learning/artificial intelligence, engineering, business, arts, 
policy, and science

• Ranked #1 for Computer Science, #1 for Artificial Intelligence, #6 in Engineering 
(U.S. News and World Report)

• 1,442 total faculty and 130 research centers

• CyLab, CMU's security and privacy research institute, brings together experts from all schools 
across the university
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CERT Division

Founded on a unique combination of experiential understanding of 
DoD missions, the cyber warfighter, the operational domain, and 
constantly changing technology

Adapts the best science to impact operational missions, increase 
the trustworthiness of technology, and develop cyber talent

Partners with DoD, non-DoD agencies, and the private sector 
enable CERT to maintain technical depth, attract top talent, 
amplify DoD financial investment, reduce the risk to DoD missions, 
and scale the research

Strengthens the resilience of critical national functions, increases 
the cybersecurity and resilience of DoD systems and Defense 
Industrial Base, and develops the cyber capacity of allies and 
partners
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Understanding the ML Attack Surface
Understanding Risks of Transfer Learning
Remedies and Limitations
Conventional Threats to Machine Learning
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Developing a Machine Learning Application
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Data Attacks – Selected Domain Subset
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Data Attacks – Measurements
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Algorithm Attacks – Feature Selection
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Data Attacks – Features
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Data Attacks – Training Data

Subset of 
Domain data

Feature Selection
Process

Measurement
Selection

Features of
subset

Training
(& Validation)

Data

Testing Data
Fed to Model

Model
Building

Algorithm

Built
Model Loss

Calculated
from

Testing
Data

Testing Data
Used for Truth

Testing
Data

Adapted from Joseph, Nelson, Rubinstein, Tygar; Adversarial Machine Learning, Cambridge University Press, 2019



12Threats to Machine Learning Applications
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release 
and unlimited distribution.

Algorithm Attacks – Model Construction
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Data Attacks – Model Testing Data
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Data Attacks – Ground Truth
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Algorithm Attacks – Model
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Data Attack – Loss Measurements
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Understanding the ML Attack Surface
Understanding Risks of Transfer Learning
Remedies and Limitations
Conventional Threats to Machine Learning
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Deep Neural Network Structure

Aashay Sachdeva, Deep Learning for Computer Vision for the average person, Mar 6, 2017, 
https://medium.com/diaryofawannapreneur/deep-learning-for-computer-vision-for-the-average-person-861661d8aa61

https://medium.com/@aashay96?source=post_page-----861661d8aa61----------------------
https://medium.com/diaryofawannapreneur/deep-learning-for-computer-vision-for-the-average-person-861661d8aa61?source=post_page-----861661d8aa61----------------------
https://medium.com/diaryofawannapreneur/deep-learning-for-computer-vision-for-the-average-person-861661d8aa61
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Trained Deep Neural Network

Sergey Golubev, Deep Neural Networks: A Getting Started Tutorial, Part #1, 30 June 2014, https://www.mql5.com/en/blogs/post/203
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Overview of Transferring Learning

Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks 
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281
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Overview of Transferring Learning
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Deep Layer Feature Extraction

Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks 
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281

Used when domains are close

Pro: Cheap training; good accuracy

Con: Adversary has deep knowledge of teacher
Easier to exfiltrate model
Easier to create adversarial input
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Full model fine tuning

Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks 
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281

Used when domains are not close

Pro: Better accuracy than deep layer feature extraction
Resilient to teacher-specific attacks

Con: Costly to train
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Mid-Layer Feature Extraction

Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks 
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281

Compromise choice

• Accuracy depends on relationship between student 
and teacher domains

• Better resiliency than deep, not as good as full
• More costly to train than deep, cheaper than full



26Threats to Machine Learning Applications
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release 
and unlimited distribution.

Outline

Understanding the ML Attack Surface
Understanding Risks of Transfer Learning
Remedies and Limitations
Conventional Threats to Machine Learning



27Threats to Machine Learning Applications
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release 
and unlimited distribution.

Creating Classifications
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Adversarial Input

Feature Space Feature SpaceDeep Neural Net

Single input
Single

classification

“Exclusion Attack”

“Inclusion Attack”
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Adding Resiliency

Feature Space Feature SpaceDeep Neural Net

Single input
Single

classification

• Cutting off spikes mitigates undesired “inclusions”
• Enclosing spikes mitigates undesired “exclusions”

“Exclusion Attack”

“Inclusion Attack”
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Training for resilience

Methods to improve model resiliency
• Add adversarial examples in training
• Train with larger domain subset
• Calculate convex hull of classification boundary
• Apply statistical robust regression

All of these methods trade resiliency for accuracy
• Adversarial examples are noisy
• Overfitting creates raggedy boundaries
• Concave boundaries could be legitimate – should be excluded
• Looser boundaries could be legitimate – should be included

Redundancy is an alternative strategy – at a cost
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Coding Hygiene

Any of the algorithms 
in creating the 
application or in the 
generated 
application could  
have coding 
weaknesses leading 
to vulnerabilities

Mitigation: Good 
cyber hygienehttps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5215
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Software supply chain for assembled software 

Machine Learning Frameworks

• Pandas

• Numpy

• Scikit-learn

• Matplotlib

• TensorFlow

• Keras

• Seaborn

• Pytorch & Torch

Data Sources

• Kaggle

• UCI Machine Learning Repository

• Find Datasets

• Data.gov

• xView

• ImageNet

• Google’s Open Images

Machine learning depends on frameworks and data sets
Relatively less is known about the security of these “supplies”
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Machine learning system face training data 
supply challenges

Rich supplies of “deep 
fakes” are readily 
accessible

Source: https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
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Poor detection of deep fakes
Cannot reliable 
verify that training 
data obtained 
through a supply 
chain

Preconfigured 
machine learning 
(i.e., teacher) 
systems provide a 
vehicle to 
distribute bad 
training data

Source: 
http://kaldir.vc.in.tum.de/faceforensics_benc
hmark/index.php (as of 9/25/19)

http://kaldir.vc.in.tum.de/faceforensics_benchmark/index.php
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Reducing software supply chain risk factors

Software supply chain risk for a 
product needs to be reduced to 
acceptable level

Supplier follows 
practices that 
reduce supply 
chain risks

Delivered or 
updated product 
is acceptably 
secure

Product 

Distribution

Operational 
Product Control

Product is used in a 
secure manner

Methods of 
transmitting the 
product to the 
purchaser guard 
again tampering

Product 
Security

Supplier 
Capability

Ellison, Alberts, Creel, Dorofee, Woody, “Software Supply Chain Risk Management: From Products to Systems of Systems,” 2010, 
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15194.pdf
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Denial of Service Attack

Remediation: Network hygiene 
(https://us-cert.cisa.gov/ncas/tips/ST04-015)
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Integration Points are Typically Weak

Machine learning applications 
are part of a system
New operating environments, 
i.e., interconnections between 
system parts, are a major cause 
of vulnerabilities
Extra-ML parts of the 
application are routes to ML 
attacks

Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities,” ACSAC 
’10 Dec. 6-10, 2010, p. 251-260.”
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Insider Threat

Easy vector for data 
attacks
Remediations:

• Organizational 
evaluation

• Organizational 
processes

• Tools
• Training

https://www.sei.cmu.edu/education-outreach/courses/course.cfm?coursecode=V26
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People ultimately use output from ML systems
Reasoning from ML systems is generally opaque
Parties can amplify potential misgivings
“Through 2021, 80% of line of business (LOB) 
leaders will override business decisions made by 
AI,” Gartner survey*
Remediations:

• Technical: Improved explanations and 
expectations

• Social: Education and experience

“Fake News” and AI Untrustworthiness

*Graham Peters, Alan D. Duncan, Gartner Group, “100 Data and Analytics Predictions Through 2024,” March 20, 2020, pg 4

Recognize: Machine Learning is Statistics    
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Ways to Engage with Us

• Download software and tools
• Explore research and capabilities
• Participate in education offerings
• Attend an event
• Search the digital library
• Read the SEI Year in Review
• Collaborate with the SEI on a new project
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890
412-268-5800 - Phone
888-201-4479 - Toll-Free
412-268-5758 - Fax
info@sei.cmu.edu - Email
www.sei.cmu.edu - Web

https://www.sei.cmu.edu/publications/software-tools/index.cfm
https://www.sei.cmu.edu/research-capabilities/index.cfm
https://www.sei.cmu.edu/education-outreach/index.cfm
https://www.sei.cmu.edu/news-events/events/index.cfm
https://resources.sei.cmu.edu/library/
https://resources.sei.cmu.edu/asset_files/AnnualReport/2019_001_001_552485.pdf
https://www.sei.cmu.edu/about/work-with-us/index.cfm
mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/
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