
Copyright © 2019, Novetta
All rights reserved.

SACS: Syntax-Agnostic Code Similarity

January 9, 2020
Lara Dedic

ldedic@novetta.com

novetta.com 2

Vulnerability Research

Challenges
● Manual investigations into codebases to find recurring vulnerabilities

can take 3-4 weeks to complete with multiple analysts
● The only automated solution available is based on exact matches
● Most solutions are syntax-based

novetta.com 3

LSH for Duplicate Detection

Mining data for textually similar items is a fundamental big data problem
● Difficult to avoid pairwise comparisons: O(n2)
● Locality Sensitive Hashing (LSH) is a solution to this: O(log n)
● LSH finds near-duplicate documents at scale

LSH is used in multiple domains:

● GoogleAI: used LSH for large-scale image searching tool, VisualRank
● Uber Engineering: used LSH to find similar trips in detecting fraudulent drivers
● Kaspersky Labs: Detecting new modifications in malware without executing it
● Plagiarism detection
● Multimedia (audio / video / text) searching
● Fingerprint comparison

“How are you?” vs. “How old are you?” vs. “What is your age?”

Similar via LSH Not similar via LSH

novetta.com 4

Technical Challenge: Limitations of LSH

LSH is quite good at finding textually similar documents
● However, we’re interested in finding semantically similar code

Disassembled executables can look different even if they have the same
functionality
● Architectural differences
● Compilation optimizations

LSH, on its own, won’t meet customer needs

“How old are you?” vs. “What is your age?”

Not similar via LSH

Similar via SACS

novetta.com 5

Syntax-Agnostic Code Similarity (SACS)

novetta.com 6

SACS Overview

novetta.com 7

1. Disassemble Executables

Convert executables from machine code to assembly
● Different assembly languages exist for each CPU architecture
● angr

○ Free, open source binary analysis tool
○ Disassembly is one of the many functionalities angr has

novetta.com 8

2. Split by Function or Block

User can choose to split by function or block before ingestion begins
● angr used to extract functions and blocks

○ control flow graphs
● basic block

○ code sequence
○ one entry, one exit

● functions can contain multiple blocks

novetta.com 9

3. Extract Semantic Meaning

Semantic meaning from assembly code is extracted using Intermediate
Representation (IR)
● Abstract machine language
● Originally used for compilers

○ compiler internal representation between source language and machine
code

○ machine independent code
● Known as the semantic representation of assembly code
● Angr uses VEX for the IR

○ According to angr, VEX is a “architecture-agnostic, side-effects-free
representation of a number of target machine languages”

ARM Instruction
add r3, r3, #4

MIPS Instruction
addi $t3, $t3, 4

VEX IR
t0 = GET:I32(16)
t1 = 0x4:I32
t3 = Add32(t0,t1)
PUT(16) = t3

novetta.com 10

4. Apply LSH
Objective: Similar Documents -> Similar Hashes
A. Represent documents in n-dimensional vector space based off n words or

grams
B. Generate random hyperplanes to cut the space, group documents together
C. Generate hash of each document based on location relative to hyperplanes
D. Store hash as key and document id as the value in a hash table
E. Repeat 1-4 multiple times to reduce the likelihood of similar documents not

being grouped together by increasing hash collisions

0

1

1

1

0

0

000

001

010

... ...

One Iteration of Steps A-D

novetta.com 11

4. Calibrate LSH
Two documents are “similar” if they have the same hash value in any hash
table generated
● But how similar are they?
● We need to minimize the likelihood that a non-similar document also gets

the same hash
“Dials” in LSH can be adjusted so that:
● Documents with the same hash value have a similarity threshold we desire
● False positive rates are minimized
● Dials include:

○ The vector space in which we plot our documents
■ Dictated by how we split our documents (n-grams)

○ How many hyperplanes are added
○ How many hash tables we generate
○ etc.

novetta.com 12

4. LSH Calibration Continued
How do we define “similar”?
● Approximation of Jaccard Similarity
● Jaccard (A,B) =

How
are
you

old = ¾ = 0.75

Jaccard(“How are you”, “How old are you”)

novetta.com 13

5. Querying
5a. Cluster Hashes
● Cluster documents by a given threshold of similarity
● Cluster exploration, rather than having a prior code segment of interest
● Cluster Labeling

○ User can label clusters based on the functionality of one document
○ Use this labelled data for other tasks

■ Deep Learning: Code Summarization
5b. Semantic Similarity Search
● Top-k query
● Retrieve the most k-similar items of a code segment of interest

novetta.com 14

Unique Aspects of SACS

Why SACS is unique:

● Semantic search
● No labelled data needed
● No training required
● No need for domain expert for implementation
● No need for manual inspection of code

novetta.com 15

Applications

Data Engineering

● Reduce the time needed to investigate functionally similar code

● Autonomous code organization by functionality

● Scalable Data Labeling: knowledge of only one code fragment is sufficient
to label the entire parent cluster

Autonomous Cyber Defense

● Allows for autonomous technical and logical vulnerability detection

● Can be the vulnerability detection component of an automatic code
patching pipeline

● Encourages reuse of patched/secure code, rather than re-implementing a
functionality

● Reduces time, effort, cost of debugging and maintaining software security

novetta.com 16

Summary
● SACS = IR + LSH
● SACS stores the semantic meaning of code
● SACS enables multiple approaches to quickly query executables on a big

data scale
● Applications include data engineering and autonomous cyber defense

