

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Secure Software Development Life
Cycle Processes

ABSTRACT: This article presents overview information about existing process-
es, standards, life-cycle models, frameworks, and methodologies that support or
could support secure software development. The initial report issued in 2006 has
been updated to reflect changes.

INTENDED AUDIENCE1: The target audience for this document includes pro-
gram and project managers, developers, and all individuals supporting improved
security in developed software. It is also relevant to software engineering process
group (SEPG) members who want to integrate security into their standard soft-
ware development processes.

Scope
Technology and content areas described include existing frameworks and stand-
ards such as the Capability Maturity Model Integration2 (CMMI) framework,
Team Software Process (TSP),3 the FAA-iCMM, the Trusted CMM/Trusted
Software Methodology (T-CMM/TSM), and the Systems Security Engineering
Capability Maturity Model (SSE-CMM). In addition, efforts specifically aimed
at security in the SDLC are included, such as the Microsoft Trustworthy Compu-
ting Software Development Lifecycle, the Team Software Process for Secure
Software Development (TSPSM-Secure), Correctness by Construction, Agile
Methods, and the Common Criteria. Two approaches, Software Assurance Ma-
turity Model (SAMM) and Software Security Framework (SSF), which were just
released, have been added to give the reader as much current information as pos-
sible.

1 Some of the content of this article is used with permission from the Software Engineering Institute
report CMU/SEI-2005-TN-024.

2 CMM, Capability Maturity Model, and CMMI are registered in the U.S. Patent and Trademark Of-
fice by Carnegie Mellon University.

3 Team Software Process and TSP are service marks of Carnegie Mellon University.

Nooper Davis

July 2013

Definitions
These are some terms used in this document for which a common understanding
would be useful.

Process – The IEEE defines a process as "a sequence of steps performed for a
given purpose" [IEEE 90]. A secure software process can be defined as the set of
activities performed to develop, maintain, and deliver a secure software solution.
Activities may not necessarily be sequential; they could be concurrent or itera-
tive.

Process model – A process model provides a reference set of best practices that
can be used for both process improvement and process assessment. Process
models do not define processes; rather, they define the characteristics of process-
es. Process models usually have an architecture or a structure. Groups of best
practices that lead to achieving common goals are grouped into process areas,
and similar process areas may further be grouped into categories. Most process
models also have a capability or maturity dimension, which can be used for as-
sessment and evaluation purposes.

It is important to understand the processes that an organization is using to build
secure software because unless the process is understood, its weaknesses and
strengths are difficult to determine. It is also helpful to use common frameworks
to guide process improvement, and to evaluate processes against a common
model to determine areas for improvement. Process models promote common
measures of organizational processes throughout the software development life
cycle (SDLC). These models identify many technical and management practices.
Although very few of these models were designed from the ground up to address
security, there is substantial evidence that these models do address good software
engineering practices to manage and build software [Goldenson 03, Herbsleb
94].

Even when organizations conform to a particular process model, there is no
guarantee that the software they build is free of unintentional security vulnerabil-
ities or intentional malicious code. However, there is probably a better likelihood
of building secure software when an organization follows solid software engi-
neering practices with an emphasis on good design, quality practices such as in-
spections and reviews, use of thorough testing methods, appropriate use of tools,
risk management, project management, and people management.

Standards – Standards are established by some authority, custom, or by general
consent as examples of best practices. Standards provide material suitable for the
definition of processes.

1 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Assessments, evaluations, appraisals – All three of these terms imply compari-
son of a process being practiced to a reference process model or standard. As-
sessments, evaluations, and appraisals are used to understand process capability
in order to improve processes. They help determine whether the processes being
practiced are adequately specified, designed, integrated, and implemented to
support the needs, including the security needs, of the software product. They are
also an important mechanisms for selecting suppliers and then monitoring sup-
plier performance.

Software assurance – SwA is defined as “the level of confidence that software
is free from vulnerabilities, either intentionally designed into the software or ac-
cidentally inserted at anytime during its life cycle, and that the software func-
tions in the intended manner” [CNSS 06]. In the Capability Maturity Model for
Software, the purpose of “software assurance” is described as providing appro-
priate visibility into the process being used by the software projects and into the
products being built [Paulk 93].

Security assurance – Although the term “security assurance” is often used,
there does not seem to be an agreed upon definition for this term. The Systems
and Security Engineering CMM describes “security assurance” as the process
that establishes confidence that a product’s security needs are being met. In gen-
eral, the term means the activities, methods, and procedures that provide confi-
dence in the security-related properties and functions of a developed solution.

In the Security Assurance section of its Software Assurance Guidebook [NASA],
NASA defines a minimum security assurance program as one that ensures the
following:

• A security risk evaluation has been performed.
• Security requirements have been established for the software and data being

developed and/or maintained.
• Security requirements have been established for the development and/or

maintenance process.
• Each software review and/or audit includes evaluation of security require-

ments.
• The configuration management and corrective action processes provide se-

curity for the existing software and the change evaluation processes prevent
security violations.

• Physical security for the software and the data is adequate.

Security assurance usually also includes activities for the requirements, design,
implementation, testing, release, and maintenance phases of an SDLC.

2 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

BACKGROUND
A survey of existing processes, process models, and standards identifies the fol-
lowing four SDLC focus areas for secure software development.

1. Security Engineering Activities. Security engineering activities include
activities needed to engineer a secure solution. Examples include security
requirements elicitation and definition, secure design based on design prin-
ciples for security, use of static analysis tools, secure reviews and inspec-
tions, and secure testing. Engineering activities have been described in oth-
er sections of the Build Security In web site.

2. Security Assurance Activities. Assurance activities include verification,
validation, expert review, artifact review, and evaluations.

3. Security Organizational and Project Management Activities. Organiza-
tional activities include organizational policies, senior management spon-
sorship and oversight, establishing organizational roles, and other organiza-
tional activities that support security. Project management activities include
project planning and tracking resource allocation and usage to ensure that
the security engineering, security assurance, and risk identification activi-
ties are planned, managed, and tracked.

4. Security Risk Identification and Management Activities. There is broad
consensus in the community that identifying and managing security risks is
one of the most important activities in a secure SDLC and in fact is the
driver for subsequent activities. Security risks in turn drive the other securi-
ty engineering activities, the project management activities, and the security
assurance activities. Risk is also covered in other areas of the Build Securi-
ty In web site.

Other common themes include security metrics and overall defect reduction as
attributes of a secure SDLC process. The remainder of this document provides
overviews of process models, processes, and methods that support one or more
of the four focus areas. The overviews should be read in the following context:

• Organizations need to define organizational processes. To do that, they use
process standards, and they also consider industry customs, regulatory re-
quirements, customer demands, and corporate culture.

• Individual projects apply the organizational processes, often with appropri-
ate tailoring. In applying the organizational processes to a particular project,
the project selects the appropriate SDLC activities.

• Projects use appropriate security risk identification, security engineering,
and security assurance practices as they do their work.

• Organizations need to evaluate the effectiveness and maturity of their pro-
cesses as used. They also need to perform security evaluations.

3 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

CAPABILITY MATURITY MODELS
Capability Maturity Models provide a reference model of mature practices for a
specified engineering discipline. An organization can compare its practices to the
model to identify potential areas for improvement. The CMMs provide goal-
level definitions for and key attributes of specific processes (software engineer-
ing, systems engineering, security engineering), but do not generally provide
operational guidance for performing the work. In other words, they don’t define
processes, they define process characteristics; they define the what, but not the
how. “CMM-based evaluations are not meant to replace product evaluation or
system certification. Rather, organizational evaluations are meant to focus pro-
cess improvement efforts on weaknesses identified in particular process areas”
[Redwine 04].

Historically, CMMs have emphasized process maturity to meet business goals of
better schedule management, better quality management, and reduction of the
general defect rate in software. Of the four secure SDLC process focus areas
mentioned earlier, CMMs generally address organizational and project manage-
ment processes and assurance processes. They do not specifically address securi-
ty engineering activities or security risk management. They also focus on overall
defect reduction, not specifically on vulnerability reduction. This is important to
note, since many defects are not security-related, and some security vulnerabili-
ties are not caused by software defects. An example of a security vulnerability
not caused by common software defects is intentionally-added malicious code.

Of the three CMMs currently in fairly widespread use, Capability Maturity Mod-
el Integration (CMMI), the Federal Aviation Administration integrated Capabil-
ity Maturity Model (FAA-iCMM), and the Systems Security Engineering Capa-
bility Maturity Model (SSE-CMM), only the SSE-CMM was developed
specifically to address security. The Trusted CMM, derived from the Trusted
Software Methodology, is also of historical importance.

Capability Maturity Model Integration (CMMI)
Capability Maturity Model Integration (CMMI) helps organizations increase the
maturity of their processes to improve long-term business performance. Three
different constellations of the CMMI exist: CMMI for Acquisition (CMMI-
ACQ), CMMI for Services (CMMI-ACQ), and CMMI for Development
(CMMI-DEV). As of December 2005, the Software Engineering Institute (SEI)
reports that 1,106 organizations and 4,771 projects have reported results from
CMMI-based appraisals. In November 2010, all three CMMI constellations were
updated to version 1.3.

CMMI-ACQ provides improvement guidance to acquisition organizations for
initiating and managing the acquisition of products and services. CMMI-SVC

4 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

provides improvement guidance to service provider organizations for establish-
ing, managing, and delivering services.

CMMI-DEV provides the latest best practices for product and service develop-
ment, maintenance, and acquisition, including mechanisms to help organizations
improve their processes and provides criteria for evaluating process capability
and process maturity. Improvement areas covered by this model include systems
engineering, software engineering, integrated product and process development,
supplier sourcing, and acquisition. CMMI-DEV has been in use for many years,
replacing its predecessor, the Capability Maturity Model for Software or Soft-
ware CMM (SW-CMM), which has been in use since the mid-1980s.

CMMI-DEV addresses four categories for process improvement and evaluation.
Each category includes several Process Areas. As can be seen from Figure 1,
CMMI-DEV addresses project management, supplier management, organization-
level process improvement and training, quality assurance, measurement, and
engineering practices. However, it does not specifically address the four areas
mentioned earlier (security risk management, security engineering practices, se-
curity assurance, and project/organizational processes for security). Although it
is not unreasonable to assume that all of these could be addressed as special cas-
es of practices already addressed by CMMI-DEV, additional goals and practices
to make assurance explicit are under development through a partnership of Booz
Allen Hamilton, Motorola, and Lockheed Martin. Progress of this effort can be
found on the Processes and Practices Working Group page on the Software As-
surance Community Resources and Information Clearinghouse site. Further in-
formation on CMMI is available on the SEI website.

5 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Figure 1. CMMI-DEV Process Areas

The FAA-iCMM is widely used in the Federal Aviation Administration. The
FAA-iCMM provides a single model of best practices for enterprise-wide im-
provement, including outsourcing and supplier management. The latest version
includes process areas to address integrated enterprise management, information
management, deployment/transition/disposal, and operation/support. The FAA-
iCMM integrates the following standards and models: ISO 9001:2000, EIA/IS
731, Malcolm Baldrige National Quality Award and President's Quality Award

6 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

criteria, CMMI-SE/SW/IPPD and CMMI-A, ISO/IEC TR 15504, ISO/IEC
12207, and ISO/IEC CD 15288.

The FAA-iCMM has been organized into the three categories and 23 Process
Areas shown in Figure 2. The FAA-iCMM addresses project management, risk
management, supplier management, information management, configuration
management, design, and testing, all of which are integral to a secure SDLC.
However, the FAA-iCMM does not address security specifically in any of these
areas. Just as with CMMI, the FAA-iCMM includes generic set of best practices
that do not specifically address security concerns. A reference document (PDF)
with pointers to the details about the model and each process area is available.

7 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Figure 2. FAA-iCMM Process Areas

To address gaps in the coverage of safety and security, some organizations with-
in the FAA and the Department of Defense (DoD) sponsored a joint effort to
identify best safety and security practices for use in combination with the FAA-
iCMM. The proposed Safety and Security extension to the FAA-iCMM identi-
fies standards-based practices expected to be used as criteria in guiding process
improvement and in appraising an organization’s capabilities for providing safe
and secure products and services.

8 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

The proposed Safety and Security additions include the following four goals and
sixteen practices:

Goal 1 – An infrastructure for safety and security is established and
maintained.
1. Ensure safety and security awareness, guidance, and competency.
2. Establish and maintain a qualified work environment that meets safety and

security needs.
3. Ensure integrity of information by providing for its storage and protection

and controlling access and distribution of information.
4. Monitor, report, and analyze safety and security incidents and identify po-

tential corrective actions.
5. Plan and provide for continuity of activities with contingencies for threats

and hazards to operations and the infrastructure.

Goal 2 – Safety and security risks are identified and managed.
1. Identify risks and sources of risks attributable to vulnerabilities, security

threats, and safety hazards.
2. For each risk associated with safety or security, determine the causal fac-

tors, estimate the consequence and likelihood of an occurrence, and deter-
mine relative priority.

3. For each risk associated with safety or security, determine, implement, and
monitor the risk mitigation plan to achieve an acceptable level of risk.

Goal 3 – Safety and security requirements are satisfied.
1. Identify and document applicable regulatory requirements, laws, standards,

policies, and acceptable levels of safety and security.
2. Establish and maintain safety and security requirements, including integrity

levels, and design the product or service to meet them.
3. Objectively verify and validate work products and delivered products and

services to assure safety and security requirements have been achieved and
fulfill intended use.

4. Establish and maintain safety and security assurance arguments and sup-
porting evidence throughout the life cycle.

Goal 4 – Activities and products are managed to achieve safety and security
requirements and objectives.
1. Establish and maintain independent reporting of safety and security status

and issues.

9 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

2. Establish and maintain a plan to achieve safety and security requirements
and objectives.

3. Select and manage products and suppliers using safety and security criteria.
4. Measure, monitor, and review safety and security activities against plans,

control products, take corrective action, and improve processes.

Further information about safety and security extensions developed for this mod-
el is available in [Ibrahim 04].

Trusted CMM/Trusted Software Methodology (T-CMM, TSM)
In the early 1990s, the then-Strategic Defense Initiative (SDI) developed a pro-
cess called the “Trusted Software Development Methodology,” later renamed to
the “Trusted Software Methodology (TSM).” This model defined levels of trust,
with lower trust levels emphasizing resistance to unintentional vulnerabilities
and higher trust levels adding processes to counter malicious developers. SDI ran
experiments with the TSM to determine whether such processes could be im-
plemented practically and what the impact of those processes would be (especial-
ly on cost and schedule). The TSM was later harmonized with the CMM, pro-
ducing the Trusted CMM (T-CMM) [Kitson 95]. While the TCMM/TSM is not
widely used today, it nevertheless remains a source of information on processes
for developing secure software.

Systems Security Engineering Capability Maturity Model (SSE-CMM)
The SSE-CMM® is a process model that can be used to improve and assess the
security engineering capability of an organization. The SSE-CMM provides a
comprehensive framework for evaluating security engineering practices against
the generally accepted security engineering principles. By defining such a
framework, the SSE-CMM, provides a way to measure and improve perfor-
mance in the application of security engineering principles. The SSE-CMM is
now ISO/IEC 21827 standard and version 3 is now available. Further infor-
mation about the model is available at http://www.sse-cmm.org [Redwine 04].

The stated purpose for developing the model is that, although the field of securi-
ty engineering has several generally accepted principles, it lacks a comprehen-
sive framework for evaluating security engineering practices against the princi-
ples. The SSE-CMM, by defining such a framework, provides a way to measure
and improve performance in the application of security engineering principles.
The SSE-CMM also describes the essential characteristics of an organization’s
security engineering processes.

The model is organized into two broad areas: (1) Security Engineering and (2)
Project and Organizational processes. Security Engineering in turn is organized

10 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

into Engineering Processes, Assurance Processes, and Risk Processes. There are
22 Process Areas distributed amongst the three organizations. Each Process Area
is composed of a related set of process goals and activities.

SEE-CMM was last revised in 2005. The model became an ISO standard in
2008. The International Systems Security Engineering Association (ISSEA)
maintains the SSE-CMM.

Figure 3. Process Areas of the SSE-CMM

11 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Microsoft’s Trustworthy Computing Security Development Lifecycle
The Trustworthy Computing Security Development Lifecycle (or SDL) is a pro-
cess that Microsoft has adopted for the development of software that needs to
withstand security attacks [Lipner 05]. The process adds a series of security-
focused activities and deliverables to each phase of Microsoft's software devel-
opment process. These security activities and deliverables include definition of
security feature requirements and assurance activities during the requirements
phase, threat modeling for security risk identification during the software design
phase, the use of static analysis code-scanning tools and code reviews during
implementation, and security focused testing, including Fuzz testing, during the
testing phase. An extra security push includes a final code review of new as well
as legacy code during the verification phase. Finally, during the release phase, a
final security review is conducted by the Central Microsoft Security team, a team
of security experts who are also available to the product development team
throughout the development life cycle, and who have a defined role in the overall
process.

Microsoft has augmented the SDL with mandatory security training for its soft-
ware development personnel, with security metrics, and with available security
expertise via the Central Microsoft Security team. Microsoft is reporting encour-
aging results from products developed using the SDL, as measured by the num-
ber of critical and important security bulletins issued by Microsoft for a product
after its release.

The book titled The Security Development Lifecycle [Howard 06] further ex-
pands information about SDL from the article referenced above. Emphasis is
given to the approach an organization must use for effective adoption of SDL.
Management commitment to improved product security is essential. In addition
to training developers and designing and building the product with appropriate
security, the SDL incorporates planning for security failures after release so the
organization is ready to swiftly correct unforeseen problems. The SDL is articu-
lated as a 12 stage process as follows:

Stage 0: Education and Awareness
Stage 1: Project Inception
Stage 2: Define and Follow Design Best Practices
Stage 3: Product Risk Assessment
Stage 4: Risk Analysis
Stage 5: Creating Security Documents, Tools, and Best Practices for Cus-
tomers
Stage 6: Secure Coding Policies

12 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Stage 7: Secure Testing Policies
Stage 8: The Security Push
Stage 9: The Final Security Review
Stage 10: Security Response Planning
Stage 11: Product Release
Stage 12: Security Response Execution

Team Software Process for Secure Software Development (TSP)
The Software Engineering Institute’s (SEI) Team Software Process (TSP) pro-
vides a framework, a set of processes, and disciplined methods for applying
software engineering principles at the team and individual level. Software pro-
duced with the TSP has one or two orders of magnitude fewer defects than soft-
ware produced with current practices—that is, 0 to .1 defects per thousand lines
of code, as opposed to 1 to 2 defects per thousand lines of code.

TSP for Secure Software Development (TSP-Secure) extends the TSP to focus
more directly on the security of software applications. The TSP-Secure project is
a joint effort of the SEI’s TSP initiative and the SEI’s CERT program. The prin-
cipal goal of the project is to develop a TSP-based method that can predictably
produce secure software. TSP-Secure addresses secure software development in
three ways. First, since secure software is not built by accident, TSP-Secure ad-
dresses planning for security. Also, since schedule pressures and people issues
get in the way of implementing best practices, TSP-Secure helps to build self-
directed development teams and then put these teams in charge of their own
work. Second, since security and quality are closely related, TSP-Secure helps
manage quality throughout the product development life cycle. Finally, since
people building secure software must have an awareness of software security
issues, TSP-Secure includes security awareness training for developers.

Teams using TSP-Secure build their own plans. Initial planning is conducted in a
series of meetings called a project launch, which takes place over a three- to
four-day period. The launch is led by a qualified team coach. In a TSP-Secure
launch, the team reaches a common understanding of the security goals for the
work and the approach they will take to do the work, produces a detailed plan to
guide the work, and obtains management support for the plan. Typical tasks in-
cluded in the plan are identifying security risks, eliciting and defining security
requirement, secure design, secure design and code reviews, and use of static
analysis tools, unit tests, and fuzz testing. (Fuzz testing involves sending random
inputs to external program interfaces during black-box testing. The term origi-

13 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

nates from the fuzz testing application that was developed and is maintained by
the University of Wisconsin [Fuzz 06, Michael 05]).

Each team member of a TSP-Secure team selects at least one of nine standard
team member roles (roles can be shared). One of the defined roles is a Security
Manager role. The Security Manager leads the team in ensuring that product re-
quirements, design, implementation, reviews, and testing address security; ensur-
ing that the product is statically and dynamically assured; providing timely anal-
ysis and warning on security problems; and tracking any security risks or issues
to closure. The security manager works with external security experts when
needed.

After the launch, the team executes its plan and ensures that all security-related
activities are taking place. Security status is presented and discussed during eve-
ry management status briefing.

Visits to web sites such as the SANS Institute’s Top 20 list of security vulnera-
bilities, the MITRE Common Vulnerabilities and Exposures (CVE) site, the US-
CERT Technical Cyber Security Alerts site, and the Microsoft Security Advisory
site show that common software defects are the leading cause of security vulner-
abilities (buffer overflows have been the most common software defect leading
to security vulnerabilities) [Microsoft 06, MITRE 06, SANS 05, US-CERT 05].
Therefore, The TSP-Secure quality management strategy is to have multiple de-
fect removal points in the software development life cycle. The more defect re-
moval points there are, the more likely one is to find problems right after they
are introduced, enabling problems to be more easily fixed and the root cause to
be more easily determined and addressed.

Each defect removal activity can be thought of as a filter that removes some per-
centage of defects that can lead to vulnerabilities from the software product (see
Figure 4). The more defect removal filters there are in the software development
life cycle, the fewer defects that can lead to vulnerabilities will remain in the
software product when it is released. More importantly, early measurement of
defects enables the organization to take corrective action early in the software
development life cycle.

14 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Figure 4. Vulnerability Removal Filters

Each time defects are removed, they are measured. Every defect removal point
becomes a measurement point. Defect measurement leads to something even
more important than defect removal and prevention: it tells teams where they
stand against their goals, helps them decide whether to move to the next step or
to stop and take corrective action, and indicates where to fix their process to
meet their goals.

The team considers the following questions when managing defects:

• What type of defects lead to security vulnerabilities?
• Where in the software development life cycle should defects be measured?
• What work products should be examined for defects?
• What tools and methods should be used to measure the defects?
• How many defects can be removed at each step?
• How many estimated defects remain after each removal step?

TSP-Secure includes training for developers, managers, and other team mem-
bers.

15 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Correctness by Construction
The Correctness by Construction methodology of Praxis High Integrity Systems
is a process for developing high-integrity software [Hall 02]. It has been used to
develop safety-critical and security-critical systems with a great degree of suc-
cess [Ross 05]. It delivers software with very low defect rates by rigorously
eliminating defects at the earliest possible stage of the process. The process is
based on the following tenets: do not introduce errors in the first place, and re-
move any errors as close as possible to the point that they are introduced.

The process is based on the strong belief that each step should serve a clear pur-
pose and be carried out using the most rigorous techniques available to address
that particular problem. In particular, the process almost always uses formal
methods to specify behavioral, security, and safety properties of the software.
There is a belief that only by using formality can the necessary precision be
achieved.

The seven key principles of Correctness by Construction are

1. Expect requirements to change. Changing requirements are managed by
adopting an incremental approach and paying increased attention to design
to accommodate change. Apply more rigor, rather than less, to avoid costly
and unnecessary rework.

2. Know why you're testing. Recognize that there are two distinct forms of
testing, one to build correct software (debugging) and another to show that
the software built is correct (verification). These two forms of testing re-
quire two very different approaches.

3. Eliminate errors before testing. Better yet, deploy techniques that make it
difficult to introduce errors in the first place. Testing is the second most ex-
pensive way of finding errors. The most expensive is to let your customers
find them for you.

4. Write software that is easy to verify. If you don't, verification and validation
(including testing) can take up to 60% of the total effort. Coding typically
takes only 10%. Even doubling the effort on coding will be worthwhile if it
reduces the burden of verification by as little as 20%.

5. Develop incrementally. Make very small changes, incrementally. After
each change, verify that the updated system behaves according to its updat-
ed specification. Making small changes makes the software much easier to
verify.

6. Some aspects of software development are just plain hard. There is no sil-
ver bullet. Don't expect any tool or method to make everything easy. The
best tools and methods take care of the easy problems, allowing you to fo-
cus on the difficult problems.

16 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

7. Software is not useful by itself. The executable software is only part of
the picture. It is of no use without user manuals, business processes,
design documentation, well-commented source code, and test cases.
These should be produced as an intrinsic part of the development, not
added at the end. In particular, recognize that design documentation
serves two distinct purposes:
− To allow the developers to get from a set of requirements to an

implementation. Much of this type of documentation outlives its
usefulness after implementation.

− To allow the maintainers to understand how the implementation
satisfies the requirements. A document aimed at maintainers is
much shorter, cheaper to produce and more useful than a tradi-
tional design document.

Correctness by Construction is one of the few secure SDLC processes that incor-
porate formal methods into many development activities. Where appropriate,
formal specification languages such as Z are used to specify functional behavior
and security properties. The SPARK programming language (a design-by-
contract subset of Ada) is often used to facilitate deep and constructive static
verification. More details about this approach are available in the BSI article
Correctness by Construction.

Agile Methods
Over the past few years, a new family of software engineering methods has start-
ed to gain acceptance amongst the software development community. These
methods, collectively called Agile Methods, conform to the Agile Manifesto
[Agile 01], which states:

“We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.”

The individual Agile methods include Extreme Programming (the most well
known), Scrum, Lean Software Development, Crystal Methodologies, Feature
Driven Development, and Dynamic Systems Development Methodology. While

17 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

there are many differences between these methodologies, they are based on some
common principles, such as short development iterations, minimal design up-
front, emergent design and architecture, collective code ownership and ability for
anyone to change any part of the code, direct communication and minimal or no
documentation (the code is the documentation), and gradual building of test cas-
es. Some of these practices are in direct conflict with secure SDLC processes.
For example, a design based on secure design principles that addresses security
risks identified during an up front activity such as Threat Modeling is an integral
part of most secure SDLC processes, but it conflicts with the emergent require-
ments and emergent design principles of Agile methods.

In their article “Towards Agile Security Assurance,” Beznosov and Kruchten
address this issue and make some proposals as to how security assurance activi-
ties could be merged into Agile development methods [Beznosov 05]. They cre-
ated a table that shows the compatibility of common security assurance activities
with Agile methods. Table 1 (replicated here with permission from the authors)
shows that almost 50% of traditional security assurance activities are not com-
patible with Agile methods (12 out of 26), less than 10% are natural fits (2 out of
26), about 30% are independent of development method, and slightly more than
10% (4 out of 26) could be semi-automated and thus integrated more easily into
the Agile methods.

Table 1. Agile Methods Compatibility with Security Assurance Practices

Security assurance method or technique Match (2) Independent
(8)

Semi-
automated
(4)

Mismatch
(12

Requirements Guidelines X

Specification Analysis X

Review X

Design Application of specific architec-
tural approaches

 X

Use of secure design princi-
ples

 X

Formal validation X

Informal validation X

Internal review X

External review X

Implementation Informal requirements tracea-
bility

 X

Requirements testing X

Informal validation X

18 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Formal validation X

Security testing X

Vulnerability and penetration
tsting

 X

Test depth analysis X

Security static analysis X

High-level programming lan-
guages and tools

 X

Adherence to implementation
standards

 X

Use of version control and
change tracking

 X

Change authorization X

Integration procedures X

Use of product generation
tools

 X

Internal review X

External review X

Security evaluation X

Others have started to explore the integration of security assurance with Agile
Methods [Beznosov 04, Poppendieck 02, Wayrynen 04].

The Agile Security Forum was initiated in 2005 to provide a focal point for in-
dustry-wide collaboration. Additional information about the Forum, as well as
other papers expanding on the approaches to security being taken in conjunction
with Agile, is available on the Forum website.

THE COMMON CRITERIA
Canada, France, Germany, the Netherlands, United Kingdom, and the United
States released a jointly developed security evaluation standard in January 1996.
This standard is known as the "Common Criteria for Information Technology
Security Evaluation" (CCITSE) but is more often referred to as the "Common
Criteria" (CC) [CC 05]. The CC has become the dominant security evaluation
framework and is now an international standard, ISO/IEC 15408.

The CC is documented in three sections. The introduction section describes the
history, purpose, and the general concepts and principles of security evaluation
and describes the model of evaluation. The second section describes a set of se-

19 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

curity functional requirements that users of products may want to specify and
that serve as standard templates for security functional requirements. The func-
tional requirements are catalogued and classified, basically providing a menu of
security functional requirements product users may select from. The third section
of the document includes security assurance requirements, which includes vari-
ous methods of assuring that a product is secure. This section also defines seven
pre-defined sets of assurance requirements called the Evaluation Assurance Lev-
els (EALs).

There are two artifacts that must be created to go through a CC evaluation: a
Protection Profile (PP) and a Security Target (ST). Both documents must be cre-
ated based on specific templates provided in the CC. A Protection Profile identi-
fies the desired security properties (user security requirements) of a product type.
Protection Profiles can usually be built by selecting appropriate components
from section two of the CC, since chances are the user requirements for the type
of product being built already exists. Protection Profiles are an implementation-
independent statement of security needs for a product type (for example, fire-
walls). Protection Profiles can include both the functional and assurance re-
quirements for the product type. A Security Target (ST) is an implementation-
dependent statement of security needs for a specific product.

The Protection Profiles and the Security Target allow the following process for
evaluation

1. An organization that wants to acquire or develop a particular type of securi-
ty product defines their security needs using a Protection Profile. The or-
ganization then has the PP evaluated, and publishes it.

2. A product developer takes this Protection Profile, writes a Security Target
that is compliance with the PP, and has this Security Target evaluated.

3. The product developer then builds a TOE (or uses an existing one) and has
this evaluated against the Security Target.

The seven evaluation levels are

1. Evaluation assurance level 1 (EAL1) - functionally tested
2. Evaluation assurance level 2 (EAL2) – structurally tested
3. Evaluation assurance level 3 (EAL3) - methodically tested and checked
4. Evaluation assurance level 4 (EAL4) - methodically designed, tested, and

reviewed
5. Evaluation assurance level 5 (EAL5) – semi-formally designed and tested
6. Evaluation assurance level 6 (EAL6) – semi-formally verified design and

tested

20 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

7. Evaluation assurance level 7 (EAL7) - formally verified design and tested

The Common Criteria Evaluation and Validation Scheme (CCEVS) is adminis-
tered in the United States by The National Institute of Standards and Technology
(NIST) and the National Security Agency (NSA) under the National Information
Assurance Partnership (NIAP). A list of validated products and their associated
EAL level is kept up-to-date on the CCEVS website.

The Common Criteria is an internationally recognized standard. Information
about the working groups and products internationally verified is available on
the Common Criteria website.

SOFTWARE ASSURANCE MATURITY MODEL
A beta release of the Software Assurance Maturity Model (SAMM) came out in
August 2008, and the official version 1.0 was just released in March 2009. This
model was developed to aid organizations in formulating and implementing a
strategy for software security. It is maintained through the OpenSAMM Project
as part of the Open Web Application Security Project (OWASP). This model is
designed to be tailored to the specific risk environment each organization faces.
Available resources for this model [Chandra 09b] are designed to aid in the fol-
lowing:

• evaluation of an organization’s existing software security program
• development of a balanced software security program using well-defined

iterations
• demonstration of improvement of a security assurance program
• definition and measurement of security-related activities within an organiza-

tion

SAMM is an open project that provides freely available content that is not ven-
dor specific.

The model hubs on four core business functions that are involved in software
development:

• Governance: processes and activities related to the way in which an organi-
zation manages its software development

• Construction: processes and activities related to the way an organization
defines the goals for and the creation of software within development pro-
jects

21 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

• Verification: processes and activities related to the way an organization vali-
dates and tests artifacts created throughout software development

• Deployment: processes and activities related to the way an organization
manages the operational release of software it creates to a runtime environ-
ment

The specific practice areas within each business function are listed in Table 2. A
maturity level structure has been identified for each practice as follows:

• Maturity Level 0: starting point where activities in the practice are largely
unfulfilled

• Maturity Level 1: practice area activities and processes are understood to an
initial extent, but fulfillment is ad hoc

• Maturity Level 2: practice efficiency and/or effectiveness is increasing
• Maturity Level 3: practice area activities and processes are comprehensive,

indicating full scale mastery of the area

Table 2. SAMM Structure

Governance Construction Verification Deployment

Strategy and Metrics Threat Assessment Design Review Vulnerability Management

Policy and Compliance Security Requirements Code Review Environment Hardening

Education & Guidance Secure Architecture Security Testing Operational Enablement

At this point in time, the model is too new to have reported usage results.

SOFTWARE SECURITY FRAMEWORK
Citigal and Fortify have partnered to develop the Software Security Framework
(SSF). The structure of SSF was initially built on the content of SAMM and ad-
justed based on review of development in a set of organizations addressing se-
cure development [Chandra 09a]. The authors of SSF have articulated a Building
Security In Maturity Model (BSIMM) based on their analysis of projects in a set
of organizations [Chess 09].

Table 3 shows the SSF structure. There are twelve practices organized into four
domains. The domains are

• Governance: practices that help organize, manage, and measure a software
security initiative

22 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

• Intelligence: practices for collecting corporate knowledge used in carrying
out software security activities throughout the organization

• SDL Touchpoints: practices associated with analysis and assurance of par-
ticular software development artifacts and processes

• Deployment: practices linked to network security and software maintenance
organizations

Table 3. SSF Domains and Practice Areas

Governance Intelligence SDL Touchpoints Deployment

Strategy and Metrics Attack Models Architecture Analy-
sis

Penetration Testing

Compliance and Policy Security Features and
Design

Code Review Software Environment

Training Standards and Re-
quirements

Security Testing Configuration Management
and Vulnerability Man-
agement

The practice areas group 110 activities that were identified in actual use within
the nine organizations studied to develop SSF, though not all were used in any
one organization. Nine activities were consistently reported in all of the studied
organizations. These are listed in Table 4 [Chess 09].

Table 4. Activities Addressed in All SSF Reviewed Organizations

What How

Build organizational support Create security related evangelism role/internal
marketing

Establish unified approach to address regulatory
and customer support needs

Create security related policy

Promote an organizational culture of security Provide security awareness training

Describe the organization’s specific security is-
sues

Create/use content specific to company history

Create security guidance through an articulation of
the security features of a product

Build and publish detailed information about secu-
rity features (authentication, role management,
key management, audit/log, crypto, protocols)

Establish organizational capability in security
architecture

Have security architect experts lead architectural
and product functionality reviews

Evaluate the attacker perspective Incorporate black box security tools into the quality
review process

Identify organization-specific problem areas Apply pen testing using external experts

Ensure a solid security infrastructure for software
development and validation

Develop and test using appropriate host/network
security

23 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

SUMMARY
Other key standards and methods that apply to developing secure software but
have not been summarized in this technical note include

• ISO/IEC 15288 for System Life Cycle Processes, available from
http://www.iso.org

• ISO/IEC 12207 for Software Life Cycle Processes, available from
http://www.iso.org

• ISO/IEC 15026 for System and Software Integrity Levels, available from
http://www.iso.org

• Cleanroom Software Engineering [Linger 94, Mills 87]

In conclusion, this survey of existing SDLC processes shows that several pro-
cesses and methodologies which have been in broad use for many years could
support secure software development. However, these were not designed specifi-
cally to address software security from the ground up. One of the major hurdles
to instituting a comprehensive consideration of security in the SDLC has been
the availability of security expertise for the developer as noted by Lipner in de-
scribing the first steps for Microsoft when instituting the Trustworthy Computing
Initiative [Lipner 05]. Four years later, a survey by Forrester commissioned by
Veracode indicates that most organizations (57%) still do not provide security
training for developers [Veracode 09].

SSE-CMM, Trusted CMM, FAA-iCMM, Common Criteria, Correctness by
Construction, and TSP Secure offered ways to address security within develop-
ment but required security-knowledgeable resources within the process im-
provement group or that an organization adopt a different and more rigorous de-
velopment approach. Few organizations were willing to embrace these changes.

Microsoft’s Trustworthy Computing SDL was the first of a new group of life
cycle approaches that seek to articulate the critical elements of security to be
embedded within any existing development life cycle such that security is ap-
propriately considered as part of normal development. Microsoft is reporting
60% fewer vulnerabilities in its operating systems released in 2008 than in 2002
[Mills 09].

The release of Version 1 of the Software Assurance Maturity Model and reports
are the use of SSF in nine organizations indicate a new level of awareness of the
value of embedding security into the SDLC. Organizations are showing in-
creased response to security, but there is still a long way to go before considera-
tions of security in the SDLC can be considered mainstream. The Veracode sur-
vey indicated 34% of the organizations included in the survey actively address

24 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

security within the SDLC, but only 13% know the security quality of their busi-
ness code [Veracode 09].

REFERENCES

[Agile 01] Agile Alliance. Manifesto for Agile Software Development (2005).

[Beznosov
04]

Beznosov, Konstantin. “Extreme Security Engineering: On Employing XP Practices to
Achieve ‘Good Enough Security’ without Defining It.” First ACM Workshop on Busi-
ness Driven Security Engineering (BizSec). Fairfax, VA, Oct. 31, 2003.

[Beznosov
05]

Beznosov, Konstantin & Kruchten, Phillipe. “Towards Agile Security Assurance,” 47–
54. Proceedings of the 2004 Workshop on New Security Paradigms. White Point
Beach Resort, Nova Scotia, Canada, September 20-23, 2004. New York, NY: Asso-
ciation for Computing Machinery, 2005.

[CC 05] The Common Criteria Portal (2005).

[Chandra
09a]

Chandra, Pravir. “What’s up with the other model?” OpenSAMM, March 6, 2009.

[Chandra
09b]

Chandra, Pravir. “Software Assurance Maturity Model,” Version 1.0.
http://www.opensamm.org

[Chess 09] Chess, B., McGraw, G., & Migues, S. “Confessions of a Software Security Alchemist.”
InformIT, March 16, 2009.

[CNSS 06] Committee on National Security Systems. National Information Assurance Glossary
(CNSS Instruction No. 4009), June 2006.

[Fuzz 06] University of Wisconsin Madison. Fuzz Testing of Application Reliability (2006).

[Goldenson
03]

Goldenson, D. & Gibson, D. Demonstrating the Impact and Benefits of CMMI: An
Update and Preliminary Results (CMU/SEI-2003-SR-009, ADA418491). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 2003.

[Hall 02] Hall, Anthony & Chapman, Roderick. “Correctness by Construction: Developing a
Commercial Secure System.” IEEE Software 19, 1 (Jan./Feb. 2002): 18-25.

[Herbsleb 94] Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., & Zubrow, D. Benefits of CMM-
Based Software Process Improvement: Initial Results (CMU/SEI-94-TR-013,
ADA283848). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 1994.

25 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

http://www.opensamm.org/

[Howard 06] Howard, Michael & Lipner, Steve. The Security Development Lifecycle. Microsoft
Press, 2006.

[Ibrahim 04] Ibrahim, L. et al. Safety and Security Extensions for Integrated Capability Maturity
Models. United States Federal Aviation Administration, 2004.

[IEEE 90] IEEE Standards Coordinating Committee. IEEE Standard Glossary of Software Engi-
neering Terminology (IEEE Std 610.12-1990). Los Alamitos, CA: IEEE Computer
Society, 1990 (ISBN 0738103918).

[Kitson 95] Kitson, David H. "A Tailoring of the CMM for the Trusted Software Domain." Proceed-
ings of the Seventh Annual Software Technology Conference. Salt Lake City, Utah,
April 9-14, 1995.

[Linger 94] Linger, R. C. “Cleanroom Process Model.” IEEE Software 11, 2 (March 1994): 50-58.

[Lipner 05] Lipner, Steve & Howard, Michael. The Trustworthy Computing Security Development
Lifecycle (2005).

[Michael 05] Michael, C. C. & Radosevich, Will. Black Box Security Testing Tools (2005).

[Microsoft 06] Microsoft Corp. Microsoft Security Advisories (2006).

[Mills 87] Mills, H., Dyer, M., & Linger, R. C. “Cleanroom Software Engineering.” IEEE Software
4, 5 (September 1987): 19-25.

[Mills 09] Mills, E. “Secure Software? Experts Say it’s no Longer a Pipe Dream." CNET News,
April 20, 2009.

[MITRE 06] The MITRE Corporation. Common Vulnerabilities and Exposures.

[NASA] NASA Software Assurance Technology Center. Software Assurance Guidebook,
NASA-GB-A201.

[Paulk 93] Paulk, M., Curtis, B., Chrissis, M. B. & Weber, C. Capability Maturity Model for Soft-
ware (Version 1.1) (CMU/SEI-93-TR-024, ADA263403). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1993.

[Poppendieck
02]

Poppendieck, M. & Morsicato, R. “Using XP for Safety-Critical Software.” Cutter IT
Journal 15, 9 (2002): 12-16.

[Redwine 04] Redwine, S. T. & Davis, N., eds. “Processes to Produce Secure Software.” Improving
Security Across the Software Development Lifecycle (National Cybersecurity Part-
nership Taskforce Report), Appendix B. http://www.cyberpartnership.org/init-soft.html
(2004).

26 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

[Ross 05] Ross, Philip E. “The Exterminators: A Small British Firm Shows That Software Bugs
Aren’t Inevitable.” IEEE Spectrum 42, 9 (September 2005): 36-41.

[SANS 05] The SANS Institute. The Twenty Most Critical Internet Security Vulnerabilities (Up-
dated) – The Experts Consensus (2005).

[SEI 09] Software Engineering Institute. Maturity Profile, 2009.

[US-CERT
05]

United States Computer Emergency Readiness Team. Technical Cyber Security
Alerts (2005).

[Veracode
09]

Veracode. “Independent Survey Finds Enterprises At-Risk from Insecure Software.”
April 19, 2009.

[Wäyrynen
04]

Wäyrynen, J., Bodén, M., & Boström, G. “Security Engineering and eXtreme Pro-
gramming: an Impossible Marriage?” Extreme Programming and Agile Methods -
XP/Agile Universe 2004: 4th Conference on Extreme Programming and Agile Meth-
ods. Calgary, Canada, August 15-18, 2004. Berlin, Germany: Springer-Verlag, 2004
(ISBN 3-540-22839-X).

27 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

Copyright 2005-2012 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT®, CMMI®, CMM®, Capability Maturity Model®, and SSE-
CMM® are registered marks of Carnegie Mellon University.

DM-0001120

28 | SECURE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESSES

	Secure Software Development Life Cycle Processes
	Scope
	Definitions

	Background
	Capability Maturity Models
	Capability Maturity Model Integration (CMMI)
	Goal 1 – An infrastructure for safety and security is established and maintained.
	Goal 2 – Safety and security risks are identified and managed.
	Goal 3 – Safety and security requirements are satisfied.
	Goal 4 – Activities and products are managed to achieve safety and security requirements and objectives.

	Trusted CMM/Trusted Software Methodology (T-CMM, TSM)
	Systems Security Engineering Capability Maturity Model (SSE-CMM)
	Microsoft’s Trustworthy Computing Security Development Lifecycle
	Team Software Process for Secure Software Development (TSP)
	Correctness by Construction
	Agile Methods

	The Common Criteria
	Software Assurance Maturity Model
	Software Security Framework
	Summary
	References

