
Formal Behavior Verification Made for Engineers

Brian R Larson
brl@multitude.net

Multitude Corporation

October 28, 2019

Brian R Larson BLESS Language and Tools October 28, 2019 1 / 24



Model-Based Engineering Challenges

AADL superbly models embedded system structure, interfaces, and
non-functional properties for analysis.

Can we ensure deployed systems (software) conform to their models,
and function correctly?

Brian R Larson BLESS Language and Tools October 28, 2019 2 / 24



Formal Methods Have Disappointed

Difficult to use; require PhD-level skills; don’t scale; don’t assure
correctness.

Absence of buffer overflow and conformance to security policy may be
worth the cost and effort to formally verify, but the don’t begin to show
systems with software perform as intended.

Brian R Larson BLESS Language and Tools October 28, 2019 3 / 24



BLESS is Different

Behavior Language for Embedded Systems with Software (BLESS),
and its verification tool, was specifically designed to verify
cyber-physical system behavior conforms to its specification, by
practicing engineers.

Brian R Larson BLESS Language and Tools October 28, 2019 4 / 24



Architecture

AADL for System Structure

AADL

structure

Brian R Larson BLESS Language and Tools October 28, 2019 5 / 24



‘Model’ Behavior

Add Behavior Annex

AADL

structure

BA

behavior

Brian R Larson BLESS Language and Tools October 28, 2019 6 / 24



‘Program’ Behavior

BLESS is Superset of BA

AADL

structure

BLESS

behavior

Brian R Larson BLESS Language and Tools October 28, 2019 7 / 24



Exact (Formal) Specification

BLESS Assertion adds Declarative Specification

AADL

structure

BLESS

behavior

Assertion

specification

Brian R Larson BLESS Language and Tools October 28, 2019 8 / 24



Verification Beyond Testing

Formal Verification by Proof

AADL

structure

BLESS

behavior

Assertion

specification

Proof

Brian R Larson BLESS Language and Tools October 28, 2019 9 / 24



Proof

Not Theorem Proving!

Extra information non-executed is interspersed throughout programs to
for a “proof outline".

The BLESS Proof Assistant transforms programs having proof outlines
(with human guidance) into deductive proofs: a sequence of theorems,
each of which is given or an axiom, or derived from prior theorems by a
sound inference rule.

BLESS proofs are human readable, use the same language as BLESS
programs, and trace back to source code.

Brian R Larson BLESS Language and Tools October 28, 2019 10 / 24



BLESS is AADL Annex Sublanguages Assertion

Temporal Logic

BLESS uses first-order predicate calculus, extended by simple
temporal operators to declaratively specify behavior. Such temporal
logic formulas are called BLESS assertions.

p@t ≡ evaluate predicate p at time t.� �
<<VP: : --cause ventricular pace
(n or p)@(now-lrl) --last beat occurred LRL interval ago,
and --not since then
not (exists t:time --there is no time

in now-lrl,,now --since then, ",," means open interval
that (n or p)@t) >> --with a beat� �

Quantification over time together with simple temporal operators
makes BLESS assertions uniquely capable of expressing timing of
embedded systems.

Brian R Larson BLESS Language and Tools October 28, 2019 11 / 24



BLESS is AADL Annex Sublanguages Assertion

Behavior Specification

BLESS::Assertion properties specify
what is guaranteed about events issued by out ports,
what is assumed about events received by in ports, and
what is always true.� �

thread VVI
features
s: in event port; --signal from analog front-end
p: out event port --pace ventricle
{BLESS::Assertion => "<<VP()>>";};

n: out event port --natural contraction
{BLESS::Assertion => "<<(now=0) or VS()>>";};

lrl: in data port ms; --lower rate limit interval
vrp: in data port ms; --ventricular refractory period

properties
Dispatch_Protocol => Aperiodic;
BLESS::Invariant => "<<LRL(now)>>";

end VVI;� �
Brian R Larson BLESS Language and Tools October 28, 2019 12 / 24



BLESS is AADL Annex Sublanguages State-Transition Machine

State-Transition Machine

BLESS began as BA, adding assertions to express what is true about
the system when a machine is in a particular state.

Actions performed during transitions can also be augmented with
assertions.

BLESS defines formal semantics for every construct, adding a type
system to be a programming language.

Brian R Larson BLESS Language and Tools October 28, 2019 13 / 24



BLESS is AADL Annex Sublanguages State-Transition Machine

� �
variables
last_beat : time
--the last pace or non-refractory sense occurred at last_beat
<<LAST: :(n or p)@last_beat>>;

states
power_on : initial state --powered-up,
<<now=0>>; --start with "sense"

pace : complete state
--a ventricular pace has occurred in the
--previous LRL-interval milliseconds

<<PACE(now)>>;
. . .
check_pace_vrp : state

--execute state to check if s is in vrp after pace
<<s@now and PACE(now)>>;

. . .� �
Brian R Larson BLESS Language and Tools October 28, 2019 14 / 24



BLESS is AADL Annex Sublanguages State-Transition Machine� �
. . .
T3_PACE_LRL_AFTER_VP: --pace when LRL times out
pace -[on dispatch timeout (n or p) lrl ms]-> pace
{ <<VP()>>
p! <<p@now>> --cause pace when LRL times out
& last_beat:=now <<last_beat=now>>};

T4_VS_AFTER_VP: --sense after pace=>check if in VRP
pace -[on dispatch s]-> check_pace_vrp{};

T5_VS_AFTER_VP_IN_VRP: -- s in VRP, go back to "pace" state
check_pace_vrp -[(now-last_beat)<vrp]-> pace{};

T6_VS_AFTER_VP_IS_NR: --s after VRP,
--go to "sense" state, send n!, reset timeouts

check_pace_vrp -[(now-last_beat)>=vrp]-> sense
{ <<VS()>>
n! <<n@now>> --send n! to reset timeouts
& last_beat:=now <<last_beat=now>>};

. . .� �
Brian R Larson BLESS Language and Tools October 28, 2019 15 / 24



BLESS is OSATE Plugin(s) Editor

Text Editor

The BLESS editor plugin to OSATE was created with Xtext to
seamlessly add syntax coloring, grammar checking while typing, and
error markers for BLESS annex subclauses, and Assertion annex
libraries.

Brian R Larson BLESS Language and Tools October 28, 2019 16 / 24



BLESS is OSATE Plugin(s) Proof Assistant

Proof Assistant

The BLESS proof assistant plugin to OSATE generates proofs1 that
formally verifies that behavior implementations meet behavior
specifications.

1with human guidance
Brian R Larson BLESS Language and Tools October 28, 2019 17 / 24



BLESS is a Formal Verification Method

Transform Proof Outlines to Deductive Proofs

BLESS assertions attached to states, and interspersed though actions
performed when transitions occur form a proof outline.

BLESS state machines are verified to uphold their specifications by
transforming their proof outlines into deductive proofs.2

The last theorem in the proof says all verification conditions have been
met.

2sequences of theorems, each of which is given or axiomatic, or derived from
prior theorems in the sequence by sound inference rules

Brian R Larson BLESS Language and Tools October 28, 2019 18 / 24



BLESS is a Formal Verification Method

Composition Verification

BLESS allows composite components (having proved correct
subcomponents) to be proved correct.

Composition verification conditions:

out port’s assertion implies connected in port’s assertion
(assume-guarantee)

conjunction of subcomponents’ invariants implies containing
component’s invariant

Brian R Larson BLESS Language and Tools October 28, 2019 19 / 24



BLESS Generates Real Code for Real Embedded Systems Adventium Lab’s ISOSCELES

BLESS Generates C++

Kansas State University worked with Adventium Labs on
Intrinsically-Secure, Open, and Safe Cyber-physically Enabled
Life-critical Essential Services (ISOSCELES) for the Department of
Homeland Security to develop a platform for secure medical
devices.

Proof-of-concept C++ code auto-generated from BLESS using AADL
runtime services implemented for ISOSCELES.

Brian R Larson BLESS Language and Tools October 28, 2019 20 / 24



BLESS Generates Real Code for Real Embedded Systems Kansas State University’s Slang

BLESS Generates Slang

Alternatively, proof-of-concept Slang3 can be generated from
BLESS.

This enables BLESS to take advantage of the Slang development and
simulation environment and its translation backends.

3KSU-developed dialect of Scala
Brian R Larson BLESS Language and Tools October 28, 2019 21 / 24



Summary

AADL+BLESS unifies specification, programming, and verification with
architecture (SSoT).

BLESS treats programs, specifications, and executions as
mathematical objects; deductive proofs argue that every execution
conforms to specification.

BLESS was created to be used by practicing engineers.

BLESS correctness proofs can be read, understood, and
checked.

BLESS generates proof-of-concept executable code through two,
different, compilation tool chains.

Together with architecture-centric virtual integration, BLESS may
reduce costs and duration of development as tests confirm correctness
rather than finding errors.

Brian R Larson BLESS Language and Tools October 28, 2019 22 / 24



Summary

Kansas State Videos featuring BLESS

GUMBO:

https://drive.google.com/file/d/14Ar0xyBMxAP_
C6buGgdmyz0EPwOBNhnO/view

BLESS State Visualizer:

https://drive.google.com/file/d/
1urXNPS3-jv-MAFexsFIRu0RgMQgqBUg2/view

Brian R Larson BLESS Language and Tools October 28, 2019 23 / 24

https://drive.google.com/file/d/14Ar0xyBMxAP_C6buGgdmyz0EPwOBNhnO/view
https://drive.google.com/file/d/14Ar0xyBMxAP_C6buGgdmyz0EPwOBNhnO/view
https://drive.google.com/file/d/1urXNPS3-jv-MAFexsFIRu0RgMQgqBUg2/view
https://drive.google.com/file/d/1urXNPS3-jv-MAFexsFIRu0RgMQgqBUg2/view


Demonstration

Please stop by my table to see dozens of threads with BLESS
behaviors and proofs, and try BLESS yourself.

To try BLESS yourself, in OSATE, under the Help menu,

select Add Additional Software;

click the Add button;

enter "https://www.multitude.net/update" (call it BLESS);

select the BLESS plugins, install, restart.

Alternatively, under the Help menu,

select Install Additional OSATE Components;

find Non SEI Components;

check the box next to the praying hands for BLESS Annex
Support;

click the Finish button.
Brian R Larson BLESS Language and Tools October 28, 2019 24 / 24


	 
	Architecture
	`Model' Behavior
	`Program' Behavior
	Exact (Formal) Specification
	Verification Beyond Testing
	Proof

	BLESS is AADL Annex Sublanguages
	BLESS is OSATE Plugin(s)
	BLESS is a Formal Verification Method
	BLESS Generates Real Code for Real Embedded Systems
	Summary
	Demonstration

