

Avionics Compositional System of Systems Simulation and Modeling Tool Chain ASSIST

October 28, 2019

Tool Expo for Model Based Embedded Systems Development

Contact Information:

Phillip Suematsu, Dhruv Monga, Howard Warner, Juan Gutierrez

Physical Optics Corporation 1845 W. 205th Street, Torrance, CA 90501 Phone: 310-320-3088 Email: {psuematsu, dmonga, hwarner, jgutierrez}@poc.com

This work is performed under contract #: W911W6-18-C-0047, W911W6-18-C-0012 W911W6-19-C-0015, W911W6-19-C-0038

DISTRIBUTION A. Approved for public release: distribution unlimited.

PHYSICAL OPTICS CORPORATION BACKGROUND

- Founded in 1985
- Small Business, Employee Owned
- Financially Strong & Profitable every year
- 270 employees 30 Ph.D.s, 112 Engineers
- Revenue Over \$115M (2019)
- 117,344 sq. ft. facilities, 4 buildings
- 2020 Expansion Additional 53,700 sq.ft., 2 buildings
- Over 160 issued patents 60 technologies
- Strategic Advisory Board

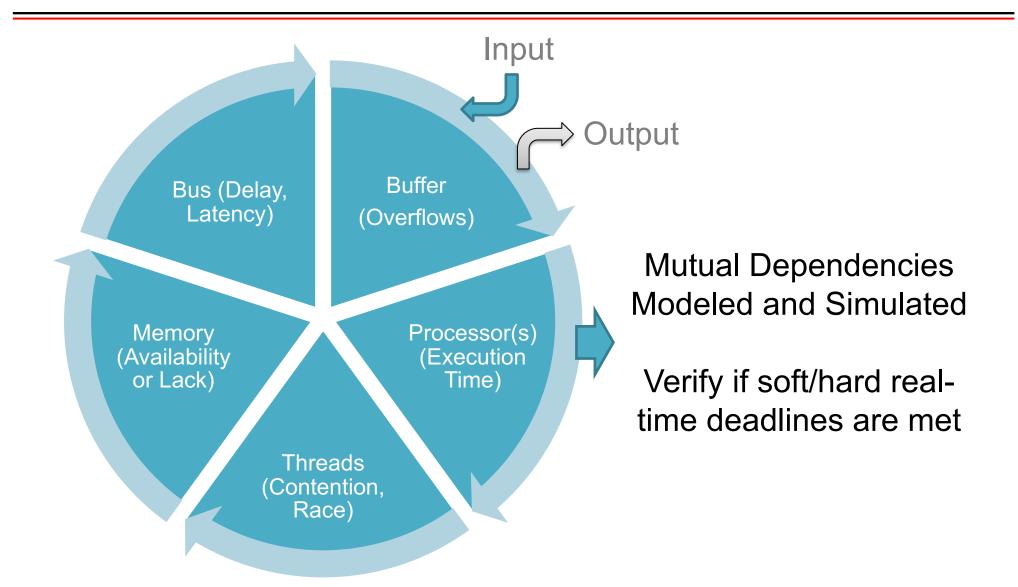
POC AREAS OF FOCUS

YSICAL OPTICS CORPORATION

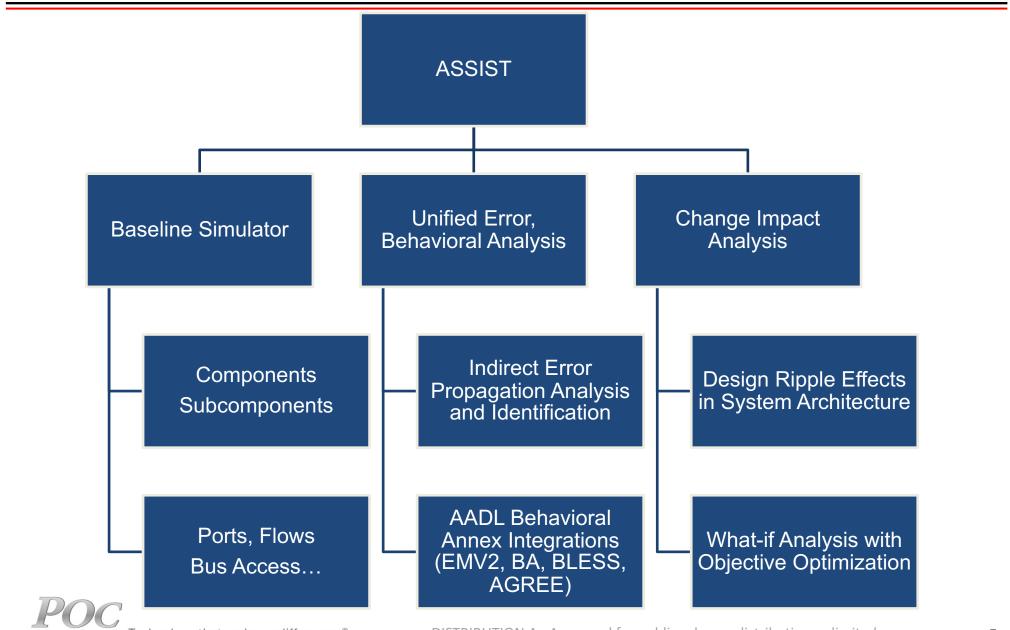
PROBLEM STATEMENT AND SOLUTION APPROACH

- Use of Multicore Processors in Avionics
 - Difficult due to inability to verify performance during requirements, design and implementation stages
 - Analysis of hard real-time and soft real-time requirements needed

Solution Approach


- Rigorous specification of requirements and design using Architecture Analysis & Design Language (AADL)
- Input data
 - System design and specification in terms of AADL components
 - Avionics system configuration using AADL specifications
- Output
 - Model parameters from AADL specifications
 - Data analysis results
 - Positive match between specifications and designed system
 - Specification violations/contradictions in designed system and deficiencies
- Use of simulation and virtual integration to verify requirements and design

Avionics Compositional System of Systems Simulation and Modeling Tool Chain (ASSIST)



GOAL: ANALYZE DEPENDENCIES AMONG COMPONENTS

ASSIST FEATURES

Technology that makes a difference.®

DISTRIBUTION A. Approved for public release: distribution unlimited.

AADL COMPONENT MODELING FUNCTIONALITY

AADL Software Components

- Thread, Process: models subprogram execution
- Data: models data access latency
- Subprogram: statistical model of code execution and data access times

AADL Hardware Components

- Processor
 - Scheduler: models thread preemption using priority queue
 - *Memory: models context switching and latencies caused by cache misses*
 - Device: models sensor and communication components
 - Bus: data exchange mechanism between components

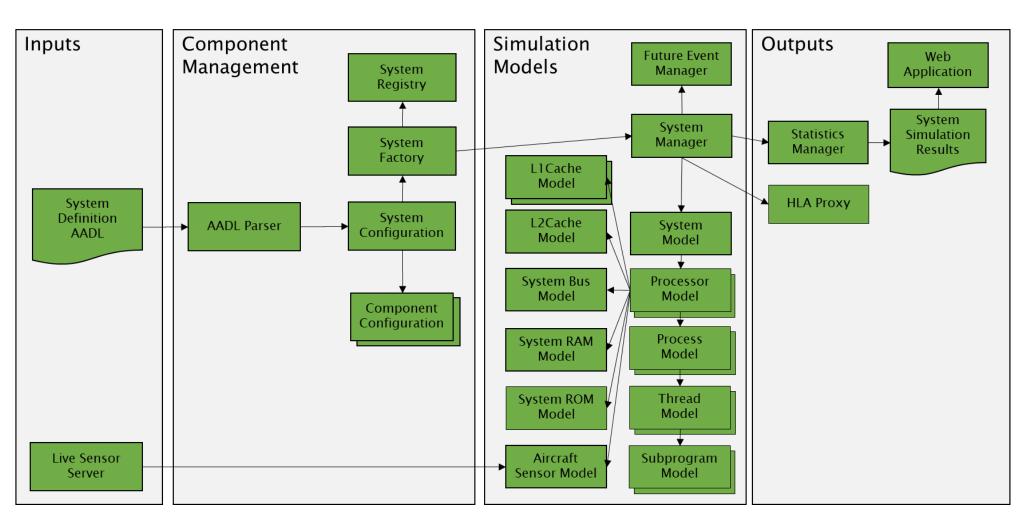
AADL Properties

- Timing (Compute execution time, deadline), memory access
- Component Connections
 - Control, data flows
 - Connection features
 - In/Out/both, direction, ports, (a)synchronous

SUPPORTED AADL FEATURES

- Package specification
 - Annex libraries not processed
- Import declaration
- Component Types
 - Software Category: Subprogram, Thread, Process
 - Execution Category: Memory, Processor, Bus, Device
 - Composite Category: System
 - Features
 - Flows
 - Properties
 - Extends
- Component Implementations
 - Subcomponents
 - Calls
 - Connections
 - Flows
 - Properties

- Subcomponents
 - Array dimensions
 - Refined to
 - Port support only
- Features
 - Direction: in, out, in out
 - Ports: event, data, event data
 - Requires
 - Provides
- Subprograms
 - Call sequence
 - Execution time
- Bus access connections
- Flow specifications
 - Types: source, sink, path
- End-to-End Flow specifications
- Property Sets
- Property Types
 - Basic data types, Reference, Record



SOLUTION

- Avionics Compositional System of Systems Simulation and Modeling Tool Chain (ASSIST)
- Analysis of hard real-time and soft real-time requirements
 - Aviation system of systems simulation using representative use case
 - Generating configuration for simulation
 - Verification of system against architecture model defined in AADL
- Approach
 - Discrete event simulation of an SoS with multi-core processors
 - Input data: AADL specifications, external data sources
 - Output
 - SoS model characterized by parameters from AADL specifications
 - Data analysis results
 - Positive matches between specifications and designed system features
 - Specification violations/contradictions in designed system and deficiencies

ASSIST HIGH LEVEL ARCHITECTURE

MULTICORE PROCESSORS IN AVIONICS

ASSIST design motivated by Multicore Processor Analysis

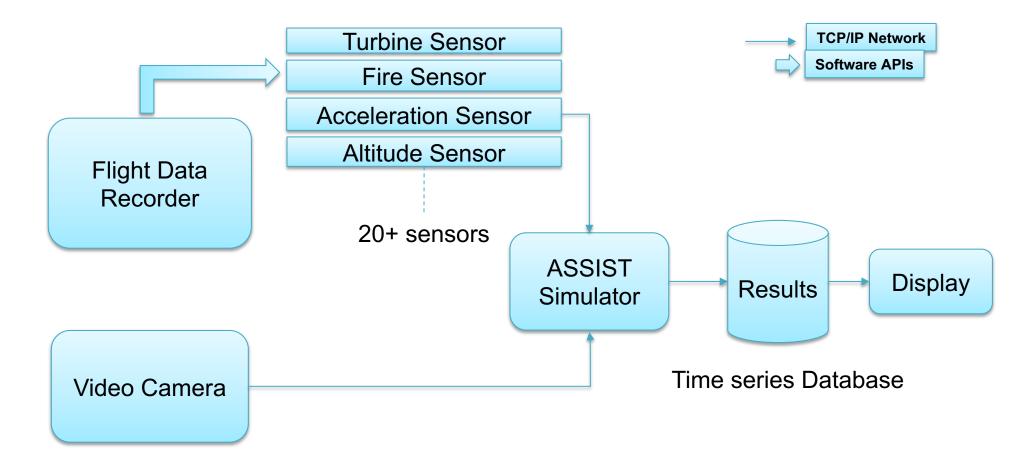
 Federal Aviation Administration Study - Assurance of Multicore Processors in Airborne Systems http://www.tc.faa.gov/its/worldpac/techrpt/tc16-51.pdf

• Statistics recommended by FAA and collected by ASSIST:

- Core utilization (% utilized averaged over ms)
- Processing time per sensor message
- Processing time per thread
- Cache miss (+hit) counts and miss (+hit) rates/ms
- Thread execution details:
 - Assigned processor
 - State transitions (running, executing, waiting on resource, idle)
- Deadline violations
- Flow rates per message

DEMONSTRATION SCENARIO (AADL MEETING OCT 2019, WASHINGTON DC)

- Virtual Integration via ASSIST Simulation featuring Hardware In the Loop (HWIL)
- Hardware: POC's flight data recorder
 - Current input sensors: turbine, fire, acceleration, altitude
 - (Modified) system design includes:
 - Multi-Core CPU, RAM, Caches, Bus
 - An additional video sensor (live feed)
- Software: Data processing framework
 - Threads, processes, subprograms to record data from sensors
- Scenario #1:
 - Flight Data Recorder (FDR) simulation using a dual core system
 - Simulate feeds from sensors (timing, message-size, order of message arrival modeled)
 - Additional messages from video: data-size, timing
- Scenario #2
 - Perform joint FDR+video simulation using a **quad** core system

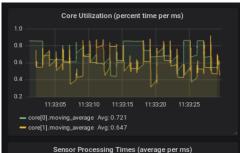


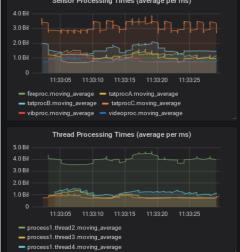
CHALLENGES IN SYSTEM IMPLEMENTATION

- Mismatch in simulation rate and data-arrival rate
 - Require tradeoff between simulation times and modeling fidelity
- Running multiple simulations simultaneously not possible on a dedicated laptop
- Modeling large systems will require platforms with high computational capabilities
- Ease of software distribution among stakeholders for evaluation during Capstone event
- Computing Approach Scalable with Size and Complexity of Simulations Is Needed

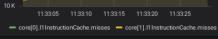
DEMONSTRATION SETUP

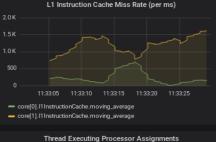
Dual Core:


- Without video camera: no violations, normal/expected operating behavior
- Adding a video camera:
 - CPUs are unable to process additional data.
 - Limited computation capabilities result in deadline violations and increased processing time for all critical sensor tasks.

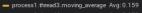

Quad Core:

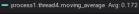
- Without video camera: no violations, normal/expected operating behavior
- Adding a video camera:
 - Data rate is still too high for any single CPU to handle
 - **However**, additional cores are available so the critical sensor processing tasks are not affected



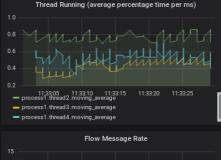

RESULTS – DUAL CORE

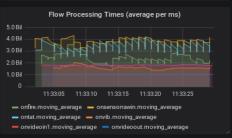
 thread2.ExecutingProcessor:
 1 (64%)
 0 (34%)

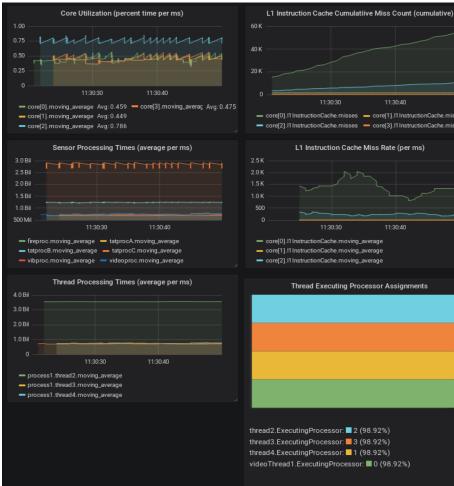

 thread3.ExecutingProcessor:
 1 (72%)
 0 (26%)

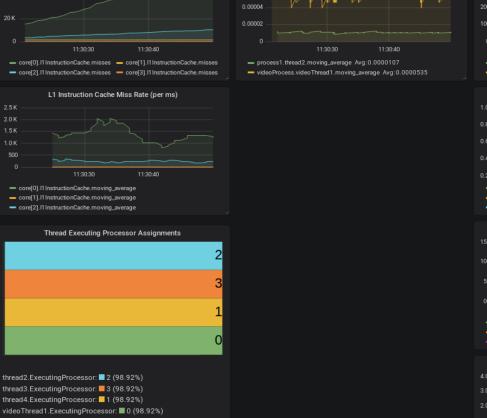

 thread4.ExecutingProcessor:
 0 (67%)
 1 (31%)

 videoThread1.ExecutingProcessor:
 1 (88%)
 0 (10%)








onailer.messageRate
 onfler.messageRate
 onfler.messageRate
 ongla.messageRate
 onpla.messageRate
 onpla.messageRate
 onpla.messageRate
 onpla.messageRate


RESULTS – QUAD CORE

0.00008

0.00006

onvideoin1.moving_average onvideoout.moving_average

Technology that makes a difference.®

Aircraft Sensor Awaiting Resource (percentage time per ms)

COMPARATIVE ANALYSIS

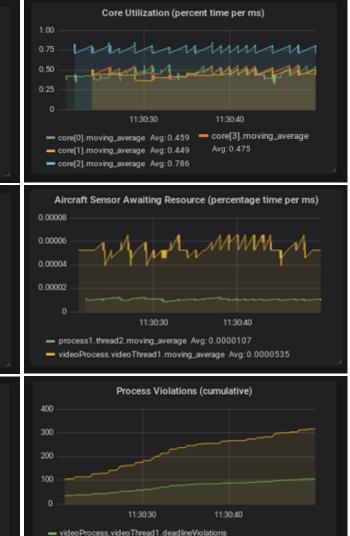
Processor Core Utilization

- Dual Core: 72% / 64%
- Quad Core: 45% / 44% / 78% / 47% (additional headroom) √

Thread Preemption Latency

- Dual Core: ~15-20 instances preemption exceeds 10%
- Quad Core: 0 instances preemption exceeds 10% √

Processing Deadline Violations


- Dual Core: 4 critical threads 100's violations
- Quad Core: only non-critical video thread √

Dual Core

Core Utilization (percent time per ms)

Quad Core

Technology that makes a difference.®

DISTRIBUTION A. Approved for public release: distribution unlimited.

videoproc.deadlineViolations

11:33:25

11:33:20

11:33:05

11:33:10

freproc.deadlineViolations
 tatprocA.deadlineViolations
 tatprocB.deadlineViolations
 tatprocC.deadlineViolations

11:33:15

vibproc.deadlineViolations videoproc.deadlineViolations

NEXT STEPS

• ARINC 653

- Virtual Processor Partitioning
- Additional Summary Statistics
- AADL Features
 - Parameters
 - Access to peripherals
 - Programming languages

GUI Improvements

- Improve interface to add files and simulate. Most of the technical work is done – just need to clean it up.
- Improve GUI for comparing and contrasting variations in SoS AADL models

Cloud Infrastructure – deploy as cluster on Amazon

– Currently working on deploying on Kubernetes

