
1
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Untangling the Knot:
Recommending Component
Refactorings
James Ivers

2
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for

the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or

decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.

CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT

LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government

use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission.

Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1114

3
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Software Structure Enables Our Ability to Innovate

Quickly delivering new capabilities and taking advantage of new technology depend on

an ability to evolve software efficiently. The structure of legacy software, however, often

fails to support this goal.

A recent anecdote from a DoD contractor: The estimate for isolating a mission capability

from the underlying hardware platform was 14,000 staff hours (development only).

This is representative of a class of changes that involve isolating a specific software

capability from its context. Other examples include

• migrating a capability to the cloud

• harvesting a component for reuse

• replacing a proprietary component

Our project will allow the same work

to be done in one-third of the time.

4
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Even modest systems are hard to comprehend, and harder

to modify.

• A modest application with only 68K lines of code (LOC)

contains more than 10K nodes and 50K relations.

• Making a "simple" change, like isolating the code for

deployment as a service, can require reasoning about

hundreds of dependencies.

A 2018 survey found that more than 40% of an average

developer work week was spent on "maintenance (i.e.,

dealing with bad code/errors, debugging, refactoring,

modifying)."

https://stripe.com/reports/developer-coefficient-2018

Software Complexity Is a Driver of the Effort Required

5
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

SEI Goal: Create an Automated Refactoring Assistant

Our goal is to create an automated assistant for

developers that recommends refactorings to isolate

software, allowing capabilities to be harvested or replaced

in 1/3 of the time it takes to do so manually.

• Uses a semi-automated approach

• Addresses all three labor-intensive activities

In perspective, our work would reduce the cost in the

earlier example from 14,000 staff hours to 4,500 staff

hours—saving the cost of 9,500 hours of development.

Refactoring is a

technique for improving

the structure of software,

but it is typically a labor-

intensive process in

which developers must

• figure out where

changes are needed

• figure out which

refactoring(s) to use

• implement refactorings

by rewriting code

6
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Building on Search-Based Software Engineering

By framing software engineering problems

as optimization problems, we can use

metaheuristic search techniques to

automatically find solutions.

• Encouraging work in refactoring focuses

on improving general quality metrics1,2,3

• Limited but growing interaction with users

to capture preferences

Our innovation

• Focus on isolating software

• Start with user preference

• Define criteria to guide search to

practical solutions

1 M. Harman & L. Tratt. Pareto Optimal Search Based Refactoring at the Design Level. GECCO 2007: 1106–1113.
2 M.W. Mkaouer, M. Kessentini, S. Bechikh, M.O. Cinnéide, & K. Deb. On the Use of Many Quality Attributes for Software

Refactoring: A Many-Objective Search-Based Software Engineering Approach. Empir. Softw. Eng. (2015) 1–43.
3 C. Simons, J. Singer, & D.R. White. Search-Based Refactoring: Metrics Are Not Enough. SSBSE 2015: 47–61.

7
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Our Approach

We are adapting search-based optimization algorithms to recommend refactorings

that isolate software to support harvesting or replacing capabilities.

Search

Algorithm

Representation Operations
Fitness

Function

Project-specific goal

Source code
Refactored source code

Graph

Representation

Formalized

Refactorings

Fitness

Functions

8
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Problem Framing

Basis: Only certain software dependencies

interfere with the goal.

Approach: Focus search on solutions that

reduce those dependencies.

• Counting those dependencies is an

objective basis for fitness.

• Reducing scope of search (by 1 to 4

orders of magnitude) promotes

scalability.

9
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Problematic Couplings

Problematic couplings are those software dependencies that interfere with

achieving a specific goal.

Our prototype automatically identifies

these, and we are using this data to

drive the research.

Application: Sizing the work to isolate

software for a range of scenarios

• Prioritizing software for migration

• Providing input to cost analysis

Source: All project data from github.com/open-source

10
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Graph Representation

We use a static code analysis

tool to extract structural

information from C# source

code.

Sample graph sizes

• Duplicati:

- 68K code lines

- 10,194 nodes and

49,620 relations

• MissionPlanner:

- 756K code lines

- 81,790 nodes and

587,542 relations
github.com/duplicati/duplicati github.com/ArduPilot/MissionPlanner

11
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Formalized Refactorings

Refactorings are the operations that the search

algorithms use to explore changes to the graph.

Refactorings involve changes like

• moving, copying, or removing code

• extracting portions of code

• introducing interfaces or intermediaries

We formalize each in terms of a precondition and

transformation over the graph.

FY19 – initial set; FY20 – scale up

Of 19,720 problematic couplings in our open

source case studies,

• 74.1% can be resolved by at least one refactoring

• 14.0% can be resolved by more than one refactoring

12
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Multi-objective Search and Fitness Functions

Multi-objective genetic algorithms like NSGA-II allow us to employ multiple

fitness functions and generate Pareto-optimal solutions.

We are exploring fitness functions to find a combination that yields

recommendations that developers will accept.

Candidates include

• solving the core problem – minimizing problematic couplings

• reducing work – minimizing code changes and unrealized interfaces

•maintainable code – improving a range of code quality metrics

• understandable code – maximizing semantic coherence

13
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Search Algorithm

Automated search finds sequences of refactorings that collectively solve as much of the

project-specific goal as possible.

FY19 – local search; FY20 – global search (genetic algorithms)

Number of Problematic Couplings Amount of Code Included in Harvest

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50 55

Refactoring sequence length

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40 45 50 55

Refactoring sequence length

14
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Looking Ahead

FY20FY19 FY21

• Broaden the palette: more

refactorings and fitness

functions

• Implement global search

using multi-objective genetic

algorithms

• Fine-tune search

• Validate with experienced

developers

• Ready to pilot generation

of refactorings for C#

software

• Build out infrastructure:

representation,

refactorings, fitness

functions, and local search

• Assemble open source

data and initial analyses

• Ready to pilot the ability to

size problems for C#

software

15
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Software Is Constantly Changing over Its Lifetime

16
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

What We Want Software to Do Also Changes

17
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Over Time, Gaps Emerge and Grow

When software structure

differs significantly from

what is needed, the pace

of change and innovation

slows down.

18
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Vision: AI for Software Engineering
Automation Can Bring Projects Back into Alignment

19
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Vision: AI for Software Engineering
Automation Can Keep Software Aligned with Needs

