
1
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Spiral AI/ML: Co-optimization for High-Performance,
Data-Intensive Computing in Resource Constrained
Environments

SEI PI: Dr. Scott McMillan, Senior Research Scientist

CMU PI’s: Professor Franz Franchetti, ECE

Professor Tze Meng Low, ECE

Professor James C. Hoe, ECE

2
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon

University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position,

policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS"

BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED

FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO

FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US

Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal

permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1113

3
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Team

Dr. Scott McMillan, SEI, PI Prof. Franz Franchetti Prof. Tze Meng Low Prof. James C. Hoe

CMU, co-PI’s

Elliott Binder Mark Blanco

Peter Oostema George Ralph* Upasana Sridhar* Arvind Srinivasan* Jiyuan Zhang

Paul Brouwer Dr. Fazle SadiDr. John Wohlbier Dr. Daniele SpampinatoDr. Jason Larkin

Courtney Rankin Sandra Sanjeev Vadim Zaliva

Anuva Kulkarni

Guanglin Xu

* unfunded collaborators

4
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Advanced Computing Efforts: Graphs to AI

2013 20152014 2016 2018

2014-current: GraphBLAS Forum (MIT/LL, LBNL, UCSB, UC Davis, Intel Research, IBM Research, TAMU)

2016 Line: GraphBLAS
2017-18 Line: Spiral Graph: Automated Code-

Generation for Graph Algorithms (CMU)2013-15 Line: Graph Algorithms on Future Architectures (Indiana U)

2015: Development and Release of GraphBLAS

Template Library, v 1.0 (with Indiana U)

2014: C3E Challenge: Graph

analytics for detecting APTs in

network data (SCORE) 2014: NSA Predictive Analytics

Hands-on Workshop

2016: NSA/LTS Pattern of Life

Graph Analytics

2015-current: Development of GraphBLAS C API Specification (w/ LBNL, Intel, IBM, UC Davis)

2016: OSD Decision Analytics

2017

2016-17 Line: Big Learning Benchmarks (CMU)

2017-18: GraphBLAS Template Library, v 2.0

(with CMU/PNNL)

P
ro

g
ra

m

2018-21 Line: A Series of

Unlikely Events: Learning

behaviors in big data (CMU)

2018 LENS: COTS Benchmark

Baseline for Graph Analytics (CMU)

2019: GraphBLAS

hands-on tutorials

2019–

2019-21 Line: Spiral

for AI and ML (CMU)

2018-22: DARPA ERI:

Software-Defined Hardware

2019 LENS: Graph Signal

Processing (CMU)

2019: GraphBLAS LAGraph

Algorithms Library

R
e

s
e
a

rc
h

 &
 D

e
v
e

lo
p
m

e
n
t

P
ro

o
f
o

f
C

o
n
c
e

p
t

R
&

D
 C

o
m

m
u

n
it
y

5
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

2013 20152014 2016 2018

2014-current: GraphBLAS Forum (MIT/LL, LBNL, UCSB, UC Davis, Intel Research, IBM Research, TAMU)

2016 Line: GraphBLAS
2017-18 Line: Spiral Graph: Automated Code-

Generation for Graph Algorithms (CMU)2013-15 Line: Graph Algorithms on Future Architectures (Indiana U)

2015: Development and Release of GraphBLAS

Template Library, v 1.0 (with Indiana U)

2014: C3E Challenge: Graph

analytics for detecting APTs in

network data (SCORE) 2014: NSA Predictive Analytics

Hands-on Workshop

2016: NSA/LTS Pattern of Life

Graph Analytics

2015-current: Development of GraphBLAS C API Specification (w/ LBNL, Intel, IBM, UC Davis)

2016: OSD Decision Analytics

2017

2016-17 Line: Big Learning Benchmarks (CMU)

2017-18: GraphBLAS Template Library, v 2.0

(with CMU/PNNL)

P
ro

g
ra

m

2018-21 Line: A Series of

Unlikely Events: Learning

behaviors in big data (CMU)

2018 LENS: COTS Benchmark

Baseline for Graph Analytics (CMU)

2019: GraphBLAS

hands-on tutorials

2019–

2019-21 Line: Spiral

for AI and ML (CMU)

2018-22: DARPA ERI:

Software-Defined Hardware

2019 LENS: Graph Signal

Processing (CMU)

2019: GraphBLAS LAGraph

Algorithms Library

R
e

s
e
a

rc
h

 &
 D

e
v
e

lo
p
m

e
n
t

P
ro

o
f
o

f
C

o
n
c
e

p
t

R
&

D
 C

o
m

m
u

n
it
y

Advanced Computing Efforts: Graphs to AI

6
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Spiral/AIML: Co-optimization for High-Performance, Data-
Intensive Computing in Resource Constrained Environments

Problem(s)

• Increasing complexity in computing architectures.

• Mission cost, size, weight, and power (CSWAP) constraints drive increasing

use of FPGAs and ASICs (more complexity).

• Achieving performance from these platforms is hard.

• Achieving performance from data-intensive applications (graphs, ML, AI) is

hard.

Solution

• Automatic code generation for data-intensive computations.

• Simultaneous, automatic co-optimization of hardware within CSWAP

constraints.

Approach

• Identify common AI/ML/Graph computational primitives.

• Encode knowledge about graph, ML, and AI computational primitives into

Spiral code-gen technology.

• Develop hardware performance models allowing Spiral to choose between

components satisfying CSWAP requirements.

“Rapidly delivering artificial

intelligence to a combat zone

won’t be easy.” Col. Drew

Cukor, USMC.

7
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Data Intensive Computing Is Important and Pervasive

Common Goal: Timely, accurate, and actionable

transformation of massive amounts of data into knowledge

Artificial Intelligence

• AI is the collection of computations

that make it possible to perceive,

reason and act.

• Practically infinite state space and

non-deterministic dynamics

• GOAL: Create intelligent agents

that achieve target performance in

deployed environments.

Machine Learning

• Machine Learning encompasses

techniques that exploit patterns

captured in data for a given task.

• 10,000s – 1,000,000s labeled and

unlabeled data

• GOAL: Provide accurate, data-

driven predictions, insights, or

models of observed phenomenon.

• Graphs represent entities and

relationships detected through

multi-INT sources.

• 1,000s – 100,000,000,000s

tracks, interactions, events

• GOAL: Find clusters of similar

entities or behaviors of interest.

Graphs

8
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Today’s Computing Landscape

1 Gflop/s = one billion floating-point operations (additions or multiplications) per second Slide credit: Franz Franchetti, “18-847G, 2018, Lecture 1: How Big is Big?”

IBM POWER9
768 Gflop/s, 300 W

24 cores, 4 GHz

4-way VSX-3

Intel Xeon 8180M
2.25 Tflop/s, 205 W

28 cores, 2.5—3.8 GHz

2-way—16-way AVX-512

Intel Xeon Phi 7290F
1.7 Tflop/s, 260 W

72 cores, 1.5 GHz

8-way/16-way LRBni

Snapdragon 835
15 Gflop/s, 2 W

8 cores, 2.3 GHz

A540 GPU, 682 DSP, NEON

Nvidia Tesla V100
7.8 Tflop/s, 300 W

5120 cores, 1.2 GHz

32-way SIMT

Intel Atom C3858
32 Gflop/s, 25 W

16 cores, 2.0 GHz

2-way/4-way SSSE3

Dell PowerEdge R940
3.2 Tflop/s, 6 TB, 850 W

4x 24 cores, 2.1 GHz

4-way/8-way AVX

Summit
187.7 Pflop/s, 13 MW

9,216 x 22 cores POWER9

+ 27,648 V100 GPUs

9
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Today’s Computing Landscape…is not tomorrow’s.

Intel PUMA (DARPA HIVE) Slide sources: DARPA Electronics Resurgence Initiative (ERI)

Summit, July 2019; DARPA ERI Summit, July 2018; DARPA

Software Defined Hardware (SDH) Proposers Day, September 2017.

DARPA 3DSOC

MIT EYERISS

Princeton DECADES

(DARPA SDH)

Google TPU

Stanford EIE

Michigan (DARPA SDH)

10
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Separation of Concerns

Separate the complexity of algorithms from the complexity of hardware systems:

S
e
p

a
ra

ti
o

n
 o

f
C

o
n

c
e
rn

s

11
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Separation of Concerns

GOAL: write once, run everywhere…fast (with help from hardware experts).

A
p

p
li

c
a

ti
o

n
 P

ro
g

ra
m

m
in

g
 I
n

te
rf

a
c

e

(A
P

I)

12
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Ligra

Xstream
PowerGraph

GraphMat

GraphBLAS

GraphIT

Galois GB

Pregel

combBLAS

GunRock

Stinger

Hornet
SuiteSparse

Grail

neo4J

RedisGraph

Gemini

GraphChi

X-stream
GridGraph

Puma

Mosaid

GBTL

Polymer

Julienne

Blogel

PathGraph

Piccolo GoFFish

Giraph++

Chaos

GPS

TOTEM

LFGraph

GraphX

Hama

Pregelix

GraphLab Kineograph

Mizan

GasCL

GoldenOrb

TigerGraph

GBASE

Chronos

GraphHP

RASP

GRACE
PowerSwitch

TurboGraph

xDGP

XPregel

CuSha

GraphMap

OrientDB

Titan

FlockDB

GoDB

Horton+

HypergraphDB

AlegroGraph

InfiniteGraph

ArangoDB

Weaver

pggraphblas

Sedge

HipG

BPP

GraphQ

GraphIn

LCC-Graph DUALSIM

GraphMP

Mosaic

Third Party names are the property of their owners. Source: Scalable Graph Processing Frameworks: A Taxonomy and Open

Challenges: S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, ACM Comput. Surv. 51, 3, Article 60 (June 2018); Slide credit:

Tim Mattson/Intel Labs, “The Growing GraphBLAS community: Progress Report”, LPS Workshop on HPC Data Analytics, Sep. 2019.

cuGraph

GraphBlast

PyGBTL

Graphulo

pygraphblas

JCoreDB Graph

Options for graph processing:

Dazed and Confused

GraphX

Systems for working with Graphs (Irregular Data)

13
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Systems for working with Graphs (Irregular Data)

Ligra

Xstream
PowerGraph

GraphMat

GraphBLAS

GraphIT

Galois GB

Pregel

combBLAS

GunRock

Stinger

Hornet

Grail

neo4J

RedisGraph

Gemini

GraphChi

X-stream
GridGraph

Puma

Mosaid

GBTL

Polymer

Julienne

Blogel

PathGraph

Piccolo GoFFish

Giraph++

Chaos

GPS

TOTEM

LFGraph

GraphX

Hama

Pregelix

GraphLab Kineograph

Mizan

GasCL

GoldenOrb

TigerGraph

GBASE

Chronos

GraphHP

RASP

GRACE
PowerSwitch

TurboGraph

xDGP

XPregel

CuSha

GraphMap

OrientDB

Titan

FlockDB

GoDB

Horton+

HypergraphDB

AlegroGraph

InfiniteGraph

ArangoDB

Weaver

pggraphblas

Sedge

HipG

BPP

GraphQ

GraphIn

LCC-Graph DUALSIM

GraphMP

Mosaic

cuGraph

GraphBlast

PyGBTL

Graphulo

pygraphblas

JCoreDB Graph

Graphs Algorithms in the Language of

Linear Algebra

GraphX
SuiteSparse

Third Party names are the property of their owners. Source: Scalable Graph Processing Frameworks: A Taxonomy and Open

Challenges: S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, ACM Comput. Surv. 51, 3, Article 60 (June 2018); Slide credit:

Tim Mattson/Intel Labs, “The Growing GraphBLAS community: Progress Report”, LPS Workshop on HPC Data Analytics, Sep. 2019.

14
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

GraphBLAS References

IEEE HPEC 2016

IEEE HPEC 2017

15
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

GraphBLAS Primitives

• Basic objects (opaque types)

– Matrix, vector, algebraic structures, and ”control objects”

• Fundamental operations over these objects

http://graphblas.org “A. Buluc, T. Mattson, S. McMillan, J. Moreira, C. Yang, “The GraphBLAS C API Specification, v 1.0.0,” May 2017, updated May 2018, Sep 2019.

…plus reductions, transpose, and application of a function to each element of a matrix or vector

Sparse matrix times

sparse matrix

Sparse matrix times

sparse vector

Element-wise

multiplication

(and addition)

Sparse matrix

extraction

(and assignment)
.

http://graphblas.org/

16
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

GraphBLAS Ecosystem: This year

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
.
1
.3

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I

(i
n

 p
ro

g
re

s
s
)

gbtl

IBM-GraphBLAS

pyGB
Python Wrapper

around gbtl

GraphBLAS

Test Frameworkgbtl
C++ Algorithms

Repository

redisgraph
redislabs

GraphBLAS Forum: https://graphblas.org

GraphBLAS

on EMU
GraphBLAST (GPU)

Galois GB Distributed gbtl

LAGraph
C algorithms

repository

pygraphblas
Python Wrapper

pggraphblas
PostgreSQL Wrapper

Multithreaded

17
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

GraphBLAS Ecosystem: This year

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
.
1
.3

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I

(i
n

 p
ro

g
re

s
s
)

gbtl

IBM-GraphBLAS

pyGB
Python Wrapper

around gbtl

GraphBLAS

Test Frameworkgbtl
C++ Algorithms

Repository

redisgraph
redislabs

GraphBLAS Forum: https://graphblas.org

GraphBLAS

on EMU
GraphBLAST (GPU)

Galois GB Distributed gbtl

LAGraph
C algorithms

repository

pygraphblas
Python Wrapper

pggraphblas
PostgreSQL Wrapper

Multithreaded

Optimizing this is

still difficult, time-

consuming, and

costly.

18
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Prof. Franz Franchetti, CMU ECE

Spiral Code Generation

19
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

What is Spiral?

Traditionally Spiral Approach

High performance library

optimized for given platform

Spiral

High performance library

optimized for given platform

Comparable
performance

20
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Spiral: Platform-Aware
Formal Program Synthesis

int triangle_count(Matrix const &L)

{

Matrix C(L.nrows(), L.ncols());

mxm(C, L, NoAccumulate(), ArithmeticSemiring<int>(),

L, transpose(L));

int count = 0;

reduce(count, NoAccumulate(), PlusMonoid<int>(), C);

return count;

}

#Δ =
𝟏

𝟔
tr(A3)

= ||L .* (L * LT)||1

CL, z = (L ⊕.⊗ LT)

#Δ = ⊕i,j C(i,j)

21
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

SPIRAL’s Math Framework
High Level Operators

z

x

y

Basic Operators

Loop Abstraction Rule Based Compiler

Leverages DARPA HACMS

22
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

SPIRAL Internals: Autotuning and Code Generation
Autotuning in Constraint Space SPIRAL as JIT and GraphBLAS Optimizer

Formal Approach To Co-Optimization Algorithm/Architecture Co-Optimization

23
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Targeting FPGAs With SPIRAL
Range of Platforms

Execution Layer: OpenCL

FPGAs in SPIRAL Flow

BUT: Not standard OpenCL Code

Small dev board
to multi-board server

transform

ruletree

OL

Σ-SPL

Host code

Fat binary

Device code

24
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Graph Algorithms in Spiral

Problem

Specification:

Algorithm

Choice:

Algorithm

Derivation:

TriangleCount()

Accum_VMV(TriangleCount())

BB(

Accum(i4, 1, X.N-1,

Accum_X(i6, [i4, 0], i4,

Dot([i6, add(i4, V(1))], [i4, add(i4, V(1))],

sub(sub(X.N, i4), V(1)))

)))

sr:

X:

X.N:

Accum:

Accum_X:

Dot:

program(

func(TVoid, "transform", [res, IJ],

decl([i6, j131, j1765, j1m31, j231, j2m31, jm32, rf63, rf64],

chain(

assign(deref(res), V(0)),

loopf(i4, 1, 262110,

chain(

assign(rf63, V(0)),

assign(j1765, add(V(262112), IJ, nth(IJ, i4))),

assign(jm32, add(V(262112), IJ, nth(IJ, add(i4, V(1))))),

loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), V(0))),

assign(j1765, add(j1765, V(1)))

),

loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), i4)),

…

// dot product

…

),

assign(deref(res), add(deref(res), rf63))

))))))

Abstract Code:

C Code:

void tc(int *res, int *IJ) {
for(...) {

// VMV product
}

}

Arithmetic semiring

Input matrix in CSR or CSC format

Number of vertices in the graph

Accumulation/Reduction function

Accumulation over an input range

Dot product

25
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

It Works for Triangle Counting and K-TRUSS
void ktruss(int *dEk, int k) {

int *S = (int*)malloc(E * sizeof(int));

int *IAk = (int*)malloc((V+1) * sizeof(int));

int *JAk = (int*)malloc(E * sizeof(int));

int Ek = E;

for (int i = 0; i < V+1; i++) IAk[i] = IA_CSR[i];

for (int i = 0; i < E; i++) JAk[i] = JA_CSR[i];

int iter = 1;

while (1) {

int row = 0;

for (int i = 0; i < Ek; i++) {

while (IAk[row+1] == i) row++;

int i0 = IAk[row]; int b0 = IAk[row + 1];

int i1 = IAk[JAk[i]];

int b1 = IAk[JAk[i] + 1];

int res = 0;

while (i0 < b0 && i1 < b1) {

int v0 = JAk[i0]; int v1 = JAk[i1];

if (v0 == v1)

res++;

if (v0 <= v1)

i0++;

if (v1 <= v0)

i1++;

}

S[i] = res;

}

...500 lines generated C code

26
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Current Efforts Feeding Into SPIRAL AI/ML
CNN/DNN Code Generation SPIRAL CUDA/OpenACC GPU Target

A SPIRAL/SEI Chip in 2020/2021 SPIRAL Library as DSL Frontend

void ioprunedconv_130_0_62_72_130(double *Y, double *X, double * S) {

...

for(int i18899 = 0; i18899 <= 1; i18899++) {

for(int i18912 = 0; i18912 <= 4; i18912++) {

a9807 = ((2*i18899) + (4*i18912));

a9808 = (a9807 + 1);

a9809 = (a9807 + 52);

a9810 = (a9807 + 53);

...

*((104 + Y + a12569)) = ((s3983 - s3987)

+ (0.80901699437494745*t6537)

+ (0.58778525229247314*t6538));

*((105 + Y + a12569)) = (((s3984 - s3988)

+ (0.80901699437494745*t6538))

- (0.58778525229247314*t6537));

}

}

fftx_plan pruned_real_convolution_plan(fftx_real *in, ….

…

tmp4 = fftx_create_temp_real(rank, &padded_dims);

plans[3] = fftx_plan_guru_dft_c2r(rank, &padded_dims,batch_rank,

&batch_dims, tmp3, tmp4, MY_FFTX_MODE_SUB);

plans[4] = fftx_plan_guru_copy_real(rank, &out_dimx, tmp4,…);

p = fftx_plan_compose(numsubplans, plans, MY_FFTX_MODE_TOP);

return p;

}

This is a specification dressed as a program
▪ Needs to be clean and concise

▪ No code level optimizations and tricks

▪ Don’t think “performance” but “correctness”

▪ For small and in-development platforms

27
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Result: Graph Challenge Champions

28
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

Open Source Spiral: CMU/ECE and SEI Partnership

 Open Source SPIRAL available

 non-viral license (BSD)

 Initial version, effort ongoing to

open source whole system

 Commercial support via SpiralGen, Inc.

 Developed over 20 years

 Funding: DARPA (OPAL, DESA, HACMS,

PERFECT, BRASS), NSF, ONR, DoD HPC,

JPL, DOE, CMU SEI, Intel, Nvidia, Mercury

 Open sourced under DARPA PERFECT

 Ongoing Partnership between SEI and ECE

www.spiral.net

http://www.spiral.net/

29
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Research Review 2019

External Collaborators

• Andrew Lumsdaine

• Marcin Zalewski

• Kevin Deweese

• Jesun Firoz

• Jeremy Kepner

• Roger Pearce

• Trevor Steil

• Aydin Buluc

• Benjamin Brock

• Carl Yang

• Kaushik Velusamy

• Tyler Simon

• Tim Mattson

• Jose Moreira

• Manoj Kumar

• Janice McMahon

• Eric Hein

• Tim Davis

Intel Research Labs

IBM

