KalKi: High Assurance Software-Defined IoT Security

Sebastian Echeverria
Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-1110
• DoD urgently needs to embrace commodity IoT technologies in its tactical systems.

• Security concerns over untrusted supply chains are an obstacle.

• We are developing a solution that remains resilient and trustworthy, even in the presence of a powerful attacker.
Attacks on IoT Devices

Microsoft catches Russian state hackers using IoT devices to breach networks

Latest Mirai variant targets routers and other IoT devices using 13 exploits

Unpatched Routers Being Used To Build Vast Proxy Army Spy On Networks

A 100,000-router botnet is feeding on a 5-year-old UPnP bug in Broadcom chips

Your smart air conditioner could help bring down the power grid
Hacked appliances could overwhelm the grid, researchers say.
IoT Threats – Vulnerable Device
IoT Threats – Compromised Device
KalKi:
High Assurance Software-Defined IoT Security Platform

Solution: Move Security Enforcement to the Network

Create an IoT security platform highly resilient to a collection of prescribed threats

• Enables the integration of IoT devices into DoD networks
• Protects the networks even if the IoT devices are not fully trusted or configurable

The term “KalKi” is of Sanskrit origin, and it is the name of an avatar of the god Vishnu, the destroyer of filth and bringer of purity, truth and trust.
Limitations of Existing Systems

Static Firewalls
- Are not device-specific
- Cannot adapt to changing security states

Gateways/Firewalls
- Can become compromised
Software-Defined Aspect

Use software-defined networking (SDN) and network function virtualization (NFV) to create a highly dynamic IoT security platform.

1. Each IoT device, D, senses/controls a set of environment variables, EV.

2. Network traffic to/from each device is tunneled through μmboxes that implement the desired network defense for the device’s current security state.
 - μmbox[SS₁] = Firewall
 - μmbox[SS₂] = IPS, ...

3. IoT controller maintains a shared statespace composed of {EV} and security state (SS) for each device.
 - SS = {Normal, Suspicious, Attack}

4. Changes in the shared statespace are evaluated by policies and may result in the deployment of new μmboxes.
High Assurance Aspect

Incrementally develop and verify security properties of elements of the software-defined IoT security platform using überSpark/überXMHF, a framework for building secure software stacks.

Control Node Properties
- Policy data integrity, including security state machine

Data Node Properties
- µmbox image storage integrity
- µmbox deploy-time integrity, including integrity of data flow definition
Year 1 Accomplishments

- Initial Threat Model to guide development
- Policy Model to set conditions to change security state, and actions to be taken
- Initial Architecture and prototype of the IoT Security Platform
- FUNCy Views (Secure) system architecture: hardware-assisted, low-latency, low-TCB, compartmentalization of legacy code on x86 platforms
- Initial Dashboard to configure system
Year 2 Accomplishments

- IoT Security Platform prototype full development
- Dashboard Update
- Creation of Policies and μmboxes for four representative IoT devices
- Experiment to Test different scenarios and red team attacks
- Extension of überXMHF and überSpark to include überObject protections for sensitive areas of the Control node and Data node
Year 2 Accomplishments – IoT Security Platform Prototype

- IoT Security Platform prototype implemented (software-defined part)
 - Able to monitor device-specific vulnerabilities
 - Supports different policies for each security state
 - Runs on commodity hardware/software
Year 2 Accomplishments – Dashboard Update

Real-time monitoring of security state, easy configuration of security policies
Year 2 Accomplishments – Policies and μmboxes

Creation of policies and μmboxes for four representative IoT devices

- Smart Plug
- Temperature Sensor
- IP Camera
- Smart Light
Year 2 Accomplishments – Experiment + Red Team Attacks

Executed multiple test scenarios to measure:

- Resiliency to attacks
- Performance (time to react to threats)
- Scalability (effect of the number of devices in performance)
Year 2 Accomplishments – überXMHF Extensions

Added support to protect state machines using überObjects via FUNCy views

- Verified, lightweight micro-hypervisor protects resource access
- Unauthorized applications can’t access State Machines encapsulated as überObjects
Year 3 – Next Steps

• Final platform development and optimizations
 - Integrate überXMHF security properties into prototype
 - Simplify integration of new devices and policies
 - Increase performance and reduce resource utilization

• Transition activities — identify transition partners for validation, testing, and adoption
 - Working with CMU liaisons for Navy (LCDR Christopher Lueken) and Marine Corps (LCDR Jeff Greenwald)
 - Establishing contacts with organizations leading IoT projects, including US Army Research Office (Durham), USAF Office of Scientific Research (Arlington), and Purdue University

• Publication of results and open source release of platform code
Looking Ahead

<table>
<thead>
<tr>
<th>NEAR</th>
<th>MID</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Full platform tested with realistic IoT deployments</td>
<td>• Platform adapted and integrated into existing DoD networks</td>
<td>• AI techniques developed to automate and improve security policies and protections</td>
</tr>
<tr>
<td>• Results published</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KalKi IoT Security Platform - Summary

Enables the **secure integration of IoT devices** into DoD networks even though they are **not fully trusted**

- Has flexible **policies** to define states, transitions and actions
- Reacts using **network and environment** information
- Uses **different network defenses** for each device and state
- Adapts to **device-specific vulnerabilities** or limitations
- Secures critical areas through integration with **überSpark/überXMHF**