TIME-BASED CORRELATION

OF MALICIOUS EVENTS

AND THEIR CONNECTIONS

Steve Henderson Brittany Nicholls Brian Ehmann

Agenda

- Motivation
- Concept
- Related Work
- Implementation
- Verification and Validation
- Production Uses
- Limitations
- Future Work

Motivation

- Analyst identifies events of interest inside their network.
 - Example: Remote process executed on a Windows desktop.
- Analyst wants to isolate any external connections related to this event.
 - Example: A user who connects remotely to computer from home and runs a command.

Ž/__

Direct connections from external source to end points are rare.

Typically involve layered firewalls, routers, load balancers, public facing servers (VPN, web, RDP).

Concept

Concept

External Network Connections (IP_i)

IP₁

Example: E₂ identified as anomalous. Which connections are related?

Concept

External Network Connections (IP_i)

IP₁

Goal: Identify connections (e.g. IP_2) correlating with occurrences of E_2 .

Limitations and Assumptions

- Issue : Overlapping connections.
 - Multiple instances of same C_i overlapping a single event E_i (left)
 - Distinct instance of C_i overlapping a single event E_i (right)

Assumption: Treat union of overlapping source as single session

Assumption: An event is only attributable to a single connection

- Issue: Connections without events; events before/after connections.
 - Assumption: Assume inconsequential; pair with null event / null connection.
- Issue: Clock differences.
 - Assumption: insignificant; Handled with "fuzzing"

Related Work

Timeline Analysis in Cyber Security

Luo, C. et al. (2014). Correlating events with time series for incident diagnosis.

Wu, Q, Ferebee, D., Lin, Y., & Dasgupta, D. (2009). An integrated cyber security monitoring system using correlation-based techniques.

Jiang, G. & Cybenko, G. (2004). *Temporal and spatial distributed event correlation for network security.*

More info: "Timeline Analysis", Forensics Wilki

PROTOTYPE 1

Count Pairs

Prototype 1: Count Pairs

Given:

C, a set of external connections with start time (ts) and end time (te)

E, a set of internal events with start time (ts)

```
b = [0..C, 0..E]
For each Connection C_i, i = 0..C
For each Event E_j, j = 0..E
if ts(E_j) \ge ts(C_i) and ts(E_j) \le te(C_i)
b[C_i, E_j]++
```

Prototype 1: Results

Example: EventFKCOJCQC → is an account logon..

	Event ID	IP_SRC	COUNT
	EventFKCOJCQC	106.19.182.148	4
	EventFKCOJCQC	110.14.228.230	5
•	EventFKCOJCQC	121.176.223.230	4
••	EventFKCOJCQC	125.238.65.64	7
	EventFKCOJCQC	141.230.198.201	43

..occurs within connection from 141.230.198.201 many times.. Check it out

- Works very well under the following conditions:
 - Frequent C_i, E_i combinations.
 - E_i does not underlap many other connections.
 - Targeted hunt (i.e., you know what you are looking for).
- Challenges
 - Interpreting/prioritizing many event-connection pairs of interest
 - O(E x C) performance at scale

PROTOTYPE 2

Independence Testing

Prototype 2: Independence Testing

• For each pair (C_i, E_i), construct contingency table.

- Perform chi-square test for independence.
 - H_0 : C_i and E_i are independent.
 - H_a : C_i and E_i are not independent.

Prototype 2 : Parallelizing

- Implemented in R.
- Algorithm easily parallelized.
 - Implemented using parallel library (native to R-base 3.4 and above).
 - No additional libraries required (runs with U.S. Army DISA DoDIN certified R).
 - Distribute (C,E) pairs among n-cores.

```
cl <- makeCluster(cores, outfile = "debug.txt")
#export globals to cluster nodes
varlist <- list("kerbInConn", "rep.row", "fuzz_ms", "cores")
clusterExport(cl, varlist, envir = .GlobalEnv)
clusterEvalQ(cl, "kerbInConn")
y2 <- parLapply(cl, 1:cores, kerbInConn, conn = ds.conn1, kerb = ds.kerb1)
y1 <- do.cal("rbind", y2)
end.time <- Sys.time()
stopCluster(cl)
time.taken <- end.time - start.time
time.taken</pre>
```

#select just the columns we want to retain
k1 <- y1[, c("KERBEROS_SOFTWAREDETAIL_FROMCLIENT", "KERBEROS_Timestamp", "CONN_Timestamp","</pre>

Prototype 2 : Results

	$\overline{\pmb{C}}_{ ext{i}}$	C _i
Ēj	C0E0	C1E0
Ej	C0E1	C1E1

EVENT	IP_SRC	C0E0	C0E1	C1E0	C1E1	Р
EventPPFDRKDR	31.8.174.5	1380	2	2	1	8.50114475192E-10
EventMKYWPSVC	31.8.174.5	1370	2	12	1	0.00468134279555
EventFKCOJCQC	141.230.198.201	1180	68	124	13	0.0851996290289
EventMKYWPSVC	73.27.92.197	1315	57	11	2	0.191683228972
EventLDEAKQEK	66.245.78.143	794	47	522	22	0.244532677737

- p-value is compared to significance level $\alpha = 0.05$
- If $p \le 0.05$, reject H_0

 $H_0: C_i$ and E_i are independent

- If $p \le 0.05$, reject H_0
- evidence suggests an association exists between C_i and E_i
- Provides a tool for prioritizing analytic output

PROTOTYPE 3

Big Data

Prototype 3: Big Data

- Scale up to production dataset.
 - Peak of 15 billion events/day: NetFlow, Windows event logs
- Implemented in Spark (Scala).
- Designed for terabyte-level application.
- Leveraged time-bucketing for efficient joins (Moshe, 2016).
- Implemented on U.S. Army/DISA Big Data Platform (BDP).

Prototype 3: Verification and Validation

- Use simulation to verify and validate analytic.
- Verify
 - Accuracy of contingency table data.
 - Performance limitations.
- Validate
 - Explore accuracy (true positive rates).
 - Explore false-positive rates.
 - Effect of time-windowing.

Prototype 3: Simulation Study

Multi-threaded discrete event simulation with 3 threads

Non-correlated connection streams C_i , i=1..C

Run R_i = (λ_{ci} , λ_{ei} , λ_{pi} , μ_{ei} , μ_{di} , C, E, P=1) i= 1..r

Metrics: % false positives, % false negatives True positive: P_{K} connection pairs yield p <= 0.05

Prototype 3: Simulation Results

1189 simulation runs 2^k random-blocked design

21% avg accuracy rate* (true positives)

2% avg false positive rate

*Factor levels chosen arbitrarily and simulation not tuned to performance.

Goal: Study interactions

CORRE	\angle		Ac		$\overline{\ }$	/							
<u> </u>	TED		ONCO										
ON	~ Con	\sim	- PK	R. 10,									
N.C.	2 4	(C)	2	THE WO	0.								
<u> </u>	ON .	ON.	NI.	in Sa	RE								
~ 0	NTES .		Mr. N	WIED WE	No.		the.	18.	3				
URS T	No 4	PPP.	AND.	SAPP.	ON	EVE Rec	ୖଂଠ	in Com io	6 30	an			
TON	1/4C	"AL	1 Pr	1 121	Nº.		Nar.	elation elation	Telar	elation .	131		
1	May M	74	EN L	PAL	ATA I	Oly Ol	10ns	"Mage "	Jun 101	S. MAG	30	S.	
	3600	60	0.001	1E-06	0.001	2103	40	0 0.5492882	28	Ĩ	0.618	, ol	
	3600	60	0.001	1E-06	0.001	21	40	0 0.63383340	22	0	0.6566	0	
	3600	60	0.1	1E-06	0.001	. 21	40	1 0.0000000	1600	0	0.7165	0	
	3600	60	0.1	1E-06	0.001	2103	40	1 0.0000000	2100	41	0.6119	0.0195	
	3600	60	0.1	1E-06	0.001	2103	40	1 0.0000000	1566	29	0.6354	0.0185	
	3600	60	0.1	1E-06	0.001	2103	40	1 0.00000393	2098	81	0.6018	0.0386	
	3600	60	0.1	1E-06	0.001	. 2103	40	1 0.0017968	5 1501	78	0.594	0.052	
	3600	60	0.1	1E-06	0.001	. 2103	40	1 0.0043505	5 1072	51	0.6077	0.0476	
	3600	60	0.001	0.01	0.001	2103	40	0 0.6316081	45	0	0.7298	0	
	3600	60	0.001	0.01	0.001	2103	40	0 0.7205095	42	1	0.6299	0.0238	
	3600	60	0.001	0.01	0.001	21	40	0 0.8126542	L 24	0	0.7751	0	
	3600	60	0.001	0.01	0.001	2103	40	0 0.8226539	3 25	0	0.6608	0	
	3600	60	0.001	0.01	0.001	2103	40	0 0.8951034	63	0	0.7455	0	
	3600	60	0.001	0.01	0.001	2103	40	0 0.9106209	29	0	0.6538	0	
	3600	60	0.1	0.01	0.001	2103	40	0 0.7935544	2236	40	0.663	0.0179	
	3600	60	0.1	0.01	0.001	2103	40	00.8389820	2573	63	0.6403	0.0245	
	3600	60	0.1	0.01	0.001	2103	40	00.8888156	2669	54	0.6405	0.0202	
	3600	60	0.1	0.01	0.001	2103	40	00.9202963	2387	112	0.0092	0.0469	
	3000	00	0.1	0.01	0.001	21	40	00.95826214	2015	120	0.0031	0.0465	
	3000	00	0.1	15.00	0.001	2103	40	10.0206057	20/9	120	0.5/91	0.0405	
	2600	60	0.001	1E-00	0.1	2103	40	0.0.0004156	450	9	0.0402	0.0203	
	2600	60	0.001	1E-00	0.1	2103	40	0.0.2627920	409	9	0.07	0.0190	
	3600	00	0.001	1E-06	0.1	2102	40	0.0.3320562	/ /21	14	0.0072	0.0201	
	3600	60	0.001	1E-06	0.1	2103	40	0.0 3678956	533	10	0.0394	0.0291	
	3600	60	0.001	1E-00	0.1	2103	40	0.0 5901998	272		0.6630	0.0184	
	3600	60	0.001	1E-00	0.1	2103	40	10.0000000	37383	728	0.6488	0.0195	
		1	1		1			10.0000000	32778	592	0.6527	0.0181	
	μ _d	۸ _d	Λ _c	۸ _p	۸ _e		E	10.0000000	34078	553	0.6871	0.0162	
						1		10.0000000			0.00/1	0.0102	

Design points

F	LOW	HIGH
λ _c	0.001	0.1
λ _p	0.000001	0.01
λ _e	0.001	0.1
μ _e	60	3600
μ_{d}	3600	10000
С	21	2103
Е	40	400
Р	1	1

21

Prototype 3: Simulation Analysis (False Negatives)

1189 simulation runs Randomized blocked design

Logistic regression

trueCorrelationSig

- Binary variable for each Pk pair
- 1 if ChiSq p-value ≤ 0.05 p
- 0 if ChiSq p-value > 0.05 p

Results:

- False negatives sensitive to λ_c
- False negatives sensitive to λ_{p}

(Call	•
Car	••

glm(formula = trueCorrelationSig ~ CONNECTION_INTERARRIVAL_RATE + CORRELATED_CONNECTION_INTERARRIVAL_RATE + EVENT_INTERARRIVAL_RATE + DURATION_MAX + NONCORRELATED_CONNECTION_IP_COUNT + NONCORRELATED_EVENT_COUNT, family = binomial, data = testData)

Deviance Residuals:

Min	1Q	Median	ЗQ	Max
-1.2589	-0.1905	-0.1234	-0.0237	3.9899

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-3.55965883	0.85949075	-4.142	3.45e-05	***
CONNECTION_INTERARRIVAL_RATE	34.81400554	4.88500267	7.127	1.03e-12	***
CORRELATED_CONNECTION_INTERARRIVAL_RATE	-433.45990151	72.96845678	-5.940	2.84e-09	***
EVENT_INTERARRIVAL_RATE	3.78437632	3.19931749	1.183	0.237	
DURATION_MAX	-0.00002293	0.00004915	-0.467	0.641	
NONCORRELATED_CONNECTION_IP_COUNT	-0.00017687	0.00031782	-0.556	0.578	
NONCORRELATED_EVENT_COUNT	-0.00059687	0.00087535	-0.682	0.495	
Signif. codes: 0 '***' 0.001 '**' 0.01	'*' 0.05 '.' 0.	.1 ' ' 1			
(Dispersion parameter for binomial famil	ly taken to be 1	1)			

Null deviance: 451.50 on 900 degrees of freedom Residual deviance: 264.67 on 894 degrees of freedom AIC: 278.67

Number of Fisher Scoring iterations: 8

More frequent non-correlated connections decrease false negatives. More frequent correlated connections increase false negatives.

Prototype 3: Simulation Analysis (False Negatives)

Correlated Connection Rate*	Non- correlated Connection Rate*	False Neg	True Pos
0.000001 -	0.001	285	8
0.000001	0.1	108	194
0.01	0.001	300	2
0.01	0.01	290	2

*Rate : Poisson process, mean interarrival time in seconds

A 64% accuracy level required a correlated / non-correlated arrival rate ratio of 1-E05.

Prototype 3: Simulation Analysis (False Positives)

Call:

glm(formula = falsePos ~ CONNECTION_INTERARRIVAL_RATE + CORRELATED_CONNECTION_INTERARRIVAL_RATE +
EVENT_INTERARRIVAL_RATE + DURATION_MAX + NONCORRELATED_CONNECTION_IP_COUNT +
NONCORRELATED EVENT COUNT, data = inputData)

Deviance Residuals:

Min 1Q Median 3Q Max -0.022377 -0.007186 -0.002008 0.003587 0.112974

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.0168736937	0.0021662733	7.789	1.47e-14	***
CONNECTION_INTERARRIVAL_RATE	0.0403531301	0.0081801891	4.933	9.25e-07	***
CORRELATED_CONNECTION_INTERARRIVAL_RATE	0.2018378781	0.0809919712	2.492	0.0128	*
EVENT_INTERARRIVAL_RATE	-0.0175528568	0.0081829220	-2.145	0.0322	*
DURATION_MAX	-0.0000018997	0.0000001268	-14.988	< 2e-16	***
NONCORRELATED_CONNECTION_IP_COUNT	0.0000043267	0.0000008617	5.021	5.93e-07	***
NONCORRELATED_EVENT_COUNT	0.0000030056	0.0000022569	1.332	0.1832	
Signif. codes: 0 '***' 0.001 '**' 0.01	'*' 0.05 '.' 0	.1 ' ' 1			

(Dispersion parameter for gaussian family taken to be 0.0001948571)

Null deviance: 0.28734 on 1188 degrees of freedom Residual deviance: 0.23032 on 1182 degrees of freedom AIC: -6774.7

Number of Fisher Scoring iterations: 2

1189 simulation runs Randomized blocked design Linear regression

falsePos rate (f)

- binary var b_{iik} for each (C_i, E_i) pair k
- 1 if ChiSq p-value ≤ 0.05 p
- 0 if ChiSq p-value > 0.05 p $f = \frac{\sum b_{iik}}{|(C_i, E_j)|} \text{ for all } (i,j) \text{ } k=1..K$

Results:

- False positives are sensitive to λ_c
- False positives are sensitive to λ_{e}
- False positives are sensitive to λ_{p}
- False positives are sensitive to μ_d
- False positives are sensitive to C

More frequent correlated connections increase false positives. More frequent non-correlated connections slightly increase false positives. More frequent non-correlated events slightly decrease false positive rate.

Prototype 3: Simulation Analysis (False Positives)

Conclusions

Goal: Design an analytic that identifies connections corresponding to malicious events.

- Result: Approach is viable.
- Ideal conditions:
 - Very infrequent occurrences of connection related to malicious event
 - Very frequent non-correlated, nonrelated connections
 - Larger number of non-correlated events
- Technique maintains decent false positive rates.

Limitations and Future Work

- More simulation!
 - Use realistic simulation parameters.
 - Explore other interarrival distributions.
- Only modeled events within connections. What about connections that follow events?
- Need to complete full-scale testing.
- Limitations and assumptions of non-parametric test.
 - Treated connection pairs independently. Is this good?
 - Better approach: Queuing theory!

Questions?