TIME-BASED
CORRELATION

OF MALICIOUS EVENTS

AND THEIR CONNECTIONS

Steve Henderson
Brittany Nicholls
Brian Ehmann

g" ENLIGHTEN

aMacAulay-Brown, Inc. company




Agenda

 Motivation

« Concept

« Related Work

* Implementation

» Verification and Validation
 Production Uses

* Limitations

e Future Work




Motivation

e Analyst identifies events of interest inside their network.
- Example: Remote process executed on a Windows desktop.

e Analyst wants to isolate any external connections related to this event.
- Example: A user who connects remotely to computer from home and runs a

command.

STAGE 1 STAGE 2 STAGE 3 STAGE 4

User remotes into network User pivots to another User runs elevated User logs off VPN.

via VPN. machine. command on target desktop
via psexec.




& &

Event logging may Direct connections
not capture sufficient from external source
connection details. to end points are rare.

)\ f){'\ \
e C hal Ienges Typically involve layered firewalls,

%/ routers, load balancers, public
facing servers (VPN, web, RDP).
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Concept O e
Multiple external*network connections (each
External Network Connections (IP) with a unique address |IP,-IP;) and internal
P events (E;-E;) happening on own timelines.
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Concept . ™ e
Example:
External Network Connections (IP)) E, identified as anomalous.
P, Which connections are related?
L 4
IP IP
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IP IP
. > o0 > *
Internal Host Events (E)
OS update * * * *
E, E, = =
disk access * *
= =
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Goal: Identify“eonnections (e.g. IP,)
External Network Connections (IP) correlating with occurrences of E,
R IP, .
:
. i 1P, .o IPy ~
.

|
Internal Host Evénts (E)
OS update * ; *

|
= ; =

disk access * * *

= E; =




Limitations and Assumptions

« Issue : Overlapping connections. i
- Multiple instances of same C; overlapping a single event E; (left) /
- Distinct instance of C; overlapping a single event E; (right) |

P, P,
* ¢ P, . ¢ P,
¢ * ¢
mmmmem e 2 e R T EE L L .
Assumption: Treat union of overlapping Assumption: An event is only
source as single session attributable to a single connection

« |ssue: Connections without events; events before/after connections.
- Assumption: Assume inconsequential; pair with null event / null connection.

 Issue: Clock differences.
- Assumption: insignificant; Handled with “fuzzing” T



Related Work

Timeline Analysis in Cyber Security @

d incident diagnosis.

Wu, Q, Ferebee, D., Lin, Y., & Dasgupta, D. (2009).
An integrated cyber security monitoring system
using correlation-based techniques.

Jiang, G. & Cybenko, G. (2004).
Temporal and spatial distributed event correlation for
network security.
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More info: “Timeline Analysis”, Forensics WiKi



PROTOTYPE 1

Count Pairs
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Given:
C, a set of external connections with start time (ts) and
end time (te)
E, a set of internal events with start time (ts)

b = [0..C,0..E]
For each Connection C;, , 1 = 0..C
For each Event E;, J = 0..E
if ts(Ej) >= ts(C;) and ts(Ej) <= te (C;)
b[Ci,Ej]++



| EventlD | P _SRC COUNT

EventFKCOJCQC | 106.19.182.148 | 4 |
Example: EventFKCOJCQC | 110.14.228.230
SV eloN[elelolng EventFKCOJCQC | 121.176.223.230 | 4 "

SRR el Ml EyentFKCOJCQC | 125.238.65.64 -oceurs within
many times.. N
e Works very well under the following conditions: Check it out
- Frequent C;, E; combinations.
- E; does not underlap many other connections. |

- Targeted hunt (i.e., you know what you are looking for).

e Challenges

- Interpreting/prioritizing many event-connection pairs of interest
- O(E x C) performance at scale



PROTOTYPE 2

Independence
Testing




Prototype 2: Independence Testing

e For each pair (C, E;), construct contingency table. /
A ¢ B
E; mii[(cm # CoEy # )] Zli[(cmz T
E, Zli[(cmqe Ci En = )] Zli[cm B~ )|

e Perform chi-square test for independence.
Ho : C;and E, are independent.
H,: C,and E; are not independent.




Prototype 2 : Parallelizing

« Implemented in R.
« Algorithm easily parallelized. /

- Implemented using parallel library (native to R-base 3.4 and above).
- No additional libraries required (runs with U.S. Army DISA DoDIN
certified R).

- Distribute (C,E) pairs among n-cores.

p.row", "fuzz_ms", "cores")
= .GlobalEnv)

y(cl, 1l:cores, kerbInConn, conn = ds.connl, kerb = ds.kerbi1)
y1 <- do.call("rbind", y2)

end.time <- Sys.time()
stopCluster(cl)

time.taken <- end.time - start.time
time.taken

#select just the columns we want to retain
ki <- yi[, c("KERBEROS_SOFTWAREDETAIL_FROMCLIENT", "KERBEROS_Timestamp", "CONM_Timestamp",




Prototype 2 : Results

EVENT IP_SRC COEO COE1. C1E0 C1E1 /
EventPPFDRKDR 31.8.174.5 380 2 2 &

EventMEKYWPSWVC 31.8.174.5 370 2
EventFKCOJCQC 141.230.198.201 1130 68

EventMEKYWPSWVC 73.27.92.197 1315 57
EventLDEAKQEK 56.245.78.143 794

p-value is compared to significance level a = 0.05
If p < 0.05, reject H,

H, : C; and E; are independent

If p = 0.05, reject H,
evidence suggests an association exists between C; and E;
Provides a tool for prioritizing analytic output




PROTOTYPE 3




Prototype 3: Big Data

e Scale up to production dataset.
- Peak of 15 billion events/day: NetFlow, Windows event logs
e Implemented in Spark (Scala).
e Designed for terabyte-level application.
e Leveraged time-bucketing for efficient joins (Moshe, 2016).
e Implemented on U.S. Army/DISA Big Data Platform (BDP).

[ oo

00:00:00 - 00:59:59 01:00:00 - 01:59:59 02:00:00 - 02:59:59

1 000000 || 2 00:40:00 || 4 | 01:00:00 . 01:20:00 . 01:40:00 |

|
Matching Measurements
(last 60 minutes)

http://zachmoshe.com/



Prototype 3: Verification and Validation

e Use simulation to verify and validate analytic.
o Verify

- Accuracy of contingency table data.

- Performance limitations.

e Validate
- Explore accuracy (true positive rates).
- Explore false-positive rates.
- Effect of time-windowing.
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Prototype 3: Simulation Study

Multi-threaded discrete event simulation with 3 threads

Non-correlated connection streams C, i=1..C
—IE I N D BN B DS N )\

Non-correlated events E;, j=1..E
o *—0—© o o o > A

Correlated pairs P, k=1..P

He Mg
Run R; = (Ag;, Aeir Apis Meis Mgin C, E, P=1) 1= 1.1

Metrics: % false positives, % false negatives
True positive: P, connection pairs yield p <= 0.05
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Prototype 3: Simulation Results

1189 simulation runs
2K random-blocked design

Design points | *

21% avg accuracy rate* F | Low | HIGH

ULe eslives) s e oo  1c0q o 2| o dos A | 0001 | 0.1
2% avg false positive rate : x 1 ; 210 e _ A, |0.000001| 0.01

o ool ooof oz vl | . | o001 | 0.1
*Factor levels _ e - 3

chosen arbitrarily and

simulation not tuned to Hg 3600 | 10000

performance. C 21 2103

E 40 400

Goal: Study interactions




Prototype 3: Simulation Analysis (False Negatives),
A

1189 simulation runs
Randomized blocked design

Logistic regression

trueCorrelationSig

* Binary variable for each Pk pair
» 1 if ChiSq p-value <0.05 p

» 0 if ChiSq p-value > 0.05 p

Results:
 False negatives sensitive to A,
* False negatives sensitive to A,

Call:

glm(formula = trueCorrelationSig ~ CONNECTION_INTERARRIVAL_RATE +
CORRELATED_CONNECTION_IMTERARRIVAL_ RATE + EVENT_INTERARRIVAL_RATE +
DURATION_MAX + NONCORRELATED CONMNECTION_IP_COUNT + NONCORRELATED_EVENT_COUNT,
family = binomial, data = testData)

Deviance Residuals:
Min 10  Median 3Q Max
-1.2589 -0.1%05 -0.1234 -0.0237 3.9899

Coefficients:

Estimate std. Error z value Pr(=|z|)
(Intercept) -3.55965883 0.85949075 -4.142 3.45e-05 ***
CONNECTION_INTERARRIVAL RATE 34.81400554 4.88500267  7.127 1.03e-12 ***
CORRELATED_CONNECTION_INTERARRIVAL_RATE -433.45990151 72.96845678 -5.940 2.84e-09 ***
EVENT_INTERARRIVAL_RATE 3.78437632 3.19931749 1.183 0.237
DURATION_MAX -0.00002293 0.00004915 -0.467 0.641
NONCORRELATED_CONMECTION_IP_COUNT -0.00017687 0.00031782 -0.556 0.578
NONCORRELATED_EVENT_COUNT -0.00059687 0.00087535 -0.682 0.495

Signif. codes: @ '#**' @,@01 '**' @.01 '*' @.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.50 on 908 degrees of freedom
Residual deviance: 264.67 on 894 degrees of freedom
AIC: 278.67

Number of Fisher Scoring iterations: 8

More frequent non-correlated connections decrease false negatives.

More frequent correlated connections increase false negatives.

22



Prototype 3: Simulation Analysis (False Negatives),
:

Correlated Non- False Neg True Pos
Connection correlated
Rate* Connection
Rate*
285
0.000001
108
=
A~
300 N

290

*Rate : Poisson process, mean interarrival time in seconds

A 64% accuracy level required a correlated / non-correlated

arrival rate ratio of 1-E05.



Prototype 3: Simulation Analysis (False Positives) |
)

Call:
glm(formula = falsePos ~ CONNECTION_INTERARRIVAL_RATE + CORRELATED_CONNECTION_INTERARRIVAL_RATE +
EVENT_INTERARRIVAL_RATE + DURATION_MAX + NONCORRELATED_CONMECTION_IP_COUNT +
NONCORRELATED_EVENT_COUNT, data = inputData)

Deviance Residuals:
Min 10 Median

30 Max

-0.022377 -0.007186 -0.002008 0.003587 0.112974

Coefficients:

(Intercept)
CONNECTION_INTERARRIVAL_RATE
CORRELATED_CONNECTION_INTERARRIVAL_ RATE
EVENT_INTERARRIVAL_RATE

DURATION_MAX
NONCORRELATED_CONNECTION_IP_COUNT
NONCORRELATED_EVENT_COUNT

Estimate
0.0168736937
0.0403531301
0.2018378781

-0.0175528568
-0.0000018957

0.0000043267
0.0000030056

Signif. codes: © '***' @.001 '**' 0.01 '*' @.85 '.'

std. Errer t value Pr(>|t|)

0.0021662733
0.0081801891
0.0809919712
0.0081825220
0.0000001268
06.0000008617
0.0000022565

P |

(Dispersion parameter for gaussian family taken to be ©.0001948571)

Null deviance: ©.28734 on 1188 degrees of freedom
Residual deviance: ©.23032 on 1182 degrees of freedom

AIC: -6774.7

Number of Fisher Scoring iterations: 2

7.789
4.933
2.492
-2.145
-14.988
5.021
1.332

1.47e-14 ***

9.25e-07 ***
0.0128 *
0.0322 *

< 2e-16 ***

5.93e-07 ***
0.1832

1189 simulation runs
Randomized blocked design
Linear regression

falsePos rate (f)

* binary var by, for each (C;, E)) pair k
» 1 if ChiSq p-value < 0.05 p

* 0 if ChiSq p-value > 0.05 p

_ Xby i) =
f= CoED] for all (i,j) k=1..K

Results:

 False positives are sensitive to A,
+ False positives are sensitive to A,
* False positives are sensitive to A,
 False positives are sensitive to g
» False positives are sensitive to C

More frequent correlated connections increase false positives.

More frequent non-correlated connections slightly increase false positives.

More frequent non-correlated events slightly decrease false positive rate.
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Prototype 3: Simulation Analysis (False Positives) .

Histogram of mydata$falsePos f =

1 1T 1T —"""71T —/"71 "/
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

mydata$falsePos 25




Conclusions

* Result: Approach is viable.

* |deal conditions:
» Very infrequent occurrences of
connection related to malicious event
» Very frequent non-correlated, non-
related connections
« Larger number of non-correlated
events

» Technique maintains decent false
positive rates.

External Network Connections (IP;)

{
i

Goal: Design an analytic that identifies connections corresponding to malicious events.
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Limitations and Future Work

e More simulation!
- Use realistic simulation parameters.
- Explore other interarrival distributions.

e Only modeled events within connections. What about connections
that follow events?

e Need to complete full-scale testing.

e Limitations and assumptions of non-parametric test.
- Treated connection pairs independently. Is this good?
- Better approach: Queuing theory!

27
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