

Simulating Your Way to Security

One Detector at a Time

Slava Nikitin

Workflow

1. Threat model
2. Collect data
3. Explore data
4. Test for discriminability
5. Build a model
6. Fit the model to data
7. Test the estimation algorithm
8. Test the estimate
9. Test the detector
10. Repeat 3-8 or deploy

MITRE

Assumption: Attack is relevant

Password Spray Diagrams

Assumption: Attack has a repeatable structure

Data Collection Diagram

Assumption: Data sensitive to the attack is captured

Data Exploration

Assumption: Discriminability of attack + baseline from baseline

Model

Assumption: Model respects restrictions of the data

$$
\begin{aligned}
& M=\left\{p_{\theta}(y \mid \mathbf{x}): \theta \in \Theta \subseteq \mathbb{R}^{p}\right\} \\
& Y \in\{0,1, \ldots\}, x_{1} \in\{1,2, \ldots, 86400\}, x_{2} \in\{1,2, \ldots, 7\} \\
& p_{\theta}(y \mid x)=\frac{\exp \{-f(\mathbf{x}, \theta)\} f(\mathbf{x}, \theta)^{y}}{y!}
\end{aligned}
$$

Estimation Algorithm

Assumption: Algorithm can consistently and accurately recover the best estimate

Penalized maximum likelihood

$$
\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta}\left(\sum_{i=1}^{n} \log p\left(y_{i} \mid f\left(\mathbf{x}_{\mathbf{i}}, \theta\right)\right)+\lambda g(\theta)\right)
$$

parameter	estimate	standard error
(Intercept)	0.3109458	0.0011767
wdayTue	0.0124353	0.0038364
wdayWed	-0.0217065	0.0026326
wdayThu	-0.0504998	0.0030671
wdayFri	-0.0424501	0.0031398
mıオav¢at	ก ก962772	ก ก 2 ¢ 277

Estimation Algorithm Test

```
diffs <- vector("double", k)
for (i in 1:k) {
    theta_i <- rmvn(theta_hat, sigma_hat)
    estimate$theta_hat <- theta_i
    x_i <- simulate(estimate)
    phi_hat <- estimator(x_i)
    diffs[i] <- phi_hat - theta_i
}
mean(diffs) / sd(diffs)
```


Estimate

Assumption: Estimate can replicate observed data

Estimated Probability Distribution

Estimate test

```
sim_means <- vector("double", k)
for (i in 1:k) {
    x_i <- simulate (estimate, n)
    sim_means[i] <- mean(x_i)
}
obs_mean <- mean(y)
diffs <- sim_means - obs_mean
mean(diffs) / sd(diffs)
```

mean	standard deviation	99% quantile
-0.0528694	32.79969	9.411476

Detector

Assumption: Detector has high TP and low FP for the attack of interest

$$
\begin{gathered}
\delta_{\mathbf{x}}(\mathbf{y})=\left\{\begin{array}{l}
1 \text { if } y \in D_{\mathbf{x}} \\
0 \text { else }
\end{array}\right. \\
D_{\mathbf{x}}=\left\{y: \mathrm{P}\left(Y>y \mid f\left(\mathbf{x}_{\mathbf{i}}, \hat{\theta}\right)\right)<\tau\right\}
\end{gathered}
$$

Detector Test

$$
\begin{gathered}
A_{x}=\left\{\mathbf{y}: y_{x} \in D_{x}\right\} \\
\text { True Positive: } \mathrm{P}\left(\bigcup_{\mathbf{x}} A_{x} \mid \text { attack and baseline }\right) \\
\text { False Positive: } \mathrm{P}\left(\bigcup_{\mathbf{x}} A_{x} \mid \text { baseline }\right)
\end{gathered}
$$

Experimental result

Experimental Factors:

$$
\begin{gathered}
\text { Time } \in\{\text { None, Early, Middle, Late }\} \\
\text { Day } \in\{\mathrm{M}, \mathrm{~T}, \ldots, \mathrm{~S}\}
\end{gathered}
$$

condition	probability of detection
baseline	0
baseline + attack	1

Conclusions

1. Is the threat relevant?
2. Is the data sensitive to the attack?
3. Is the model constrained to data?
4. Is the attack + baseline traffic discriminable from the baseline traffic?
5. Is our estimation algorithm accurate?
6. Is our estimate accurate?
7. Is our detector accurate?
