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Predictive Models for Identifying 
Software Components Prone to 
Failure During Security Attacks 

ABSTRACT: Sometimes software security engineers are given a product that 
they not familiar with and are asked to do a security analysis of it in a relatively 
short time. A knowledge of where vulnerabilities are most likely to reside can 
help prioritize their efforts. In general, software metrics can be used to predict 
fault- and failure-prone components for prioritizing inspection, testing, and rede-
sign efforts. We believe that the security community can leverage this 
knowledge to design tools and metrics that can identify vulnerability- and attack-
prone components early in the software life cycle. We analyzed a large commer-
cial telecommunications software-based system and found that the presence of 
security faults correlates strongly with the presence of a more general category 
of reliability faults. This, of course, is not surprising if one accepts the notion 
that security faults are in many instances a subset of a reliability fault set. We 
discuss a model that can be useful for identifying attack-prone components and 
for prioritizing security efforts early in the software life cycle. 

Please note that, although this article is within the Best Practices section of BSI, 
the work described in it is exploratory and not yet mature enough to be a rec-
ommended practice. 
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INTRODUCTION 
Software reliability engineering is concerned with the design, delivery, and 
maintenance of software at a reliability level requested by a customer [14]. In the 
past, principle concerns revolved around functional and performance reliability, 
availability, and dependability. However, in recent years, the spotlight has also 
included software security. 
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In the general reliability realm, internal and external software metrics can be 
used to successfully predict fault- and failure-prone components relatively early 
in the software life cycle (SLC), e.g., [16, 20]. A fault-prone component is likely 
to contain faults [4]. A failure-prone component is likely to exhibit execution-
time anomalous behavior or failure due to a fault [19]. However, if faulty code is 
never executed, or otherwise exploited, the component will not fail. In the con-
text of security, and this paper, a vulnerability is a fault (of either commission or 
omission) that can result in a security event. If such a fault is exploited during 
execution, the software experiences a security failure. If that happens often, we 
say that the software is attack-susceptible or attack-prone. 

A predictive capability that identifies fault- and failure-prone components early 
in the software life cycle can present a significant advantage to a software organ-
ization because the costs of finding and fixing problems increases as one pro-
gresses through the SLC [3]. Prediction models can illuminate these problematic 
components for software engineers to prioritize testing, inspections, and re-
design and thus mitigate the most significant problems first. However, inspection 
of all fault-prone components may cause the development team to expend valua-
ble and limited verification resources in low risk areas of the code that, while 
identified as fault-prone, in reality may be of sufficiently high quality in the con-
text of a normal operational profile (or usage) [14]. Identification of failure-
prone components may reduce that overhead by focusing on software behaviors 
in the context of the expected operational profile. 

We define a vulnerability-prone component as a component that is likely to con-
tain one or more vulnerabilities. A vulnerability-prone component is analogous 
to a fault-prone component in that vulnerabilities may remain latent (similar to 
faults) until encountered by an attacker (or tester/customer) during software code 
execution. Vulnerabilities can come in a wide range of severity and likelihood of 
exploitation. It is quite possible that a vulnerability may be never found, may be 
difficult to exploit, or may not become exploitable in the field until after the user 
either changes the system configuration or environment or makes another change 
in a future revision of the software. (The latter is known as the “next release ef-
fect” [11, 12].) 

The parallel between the classical software reliability engineering definition of 
faults and failures [15] and our definition of vulnerability and attack is illustrated 
in Figure 1. Static analytical methods and metrics can be used to identify physi-
cal faults in the code—either actual mistakes (errors of commission) or missing 
code (errors of omission). If the security requirements are well defined, such 
analysis will also uncover a subset of faults that represent security vulnerabili-
ties. During software use, faults that are encountered by the flow of execution 
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(and result in a visible anomaly) become software failures. If vulnerabilities are 
exploited during software execution, we report a security failure either during 
testing or during an actual attack. Attack-prone components exhibit comparative-
ly high rates of security failures in security testing or in the field. This may be 
because their vulnerabilities are an easy target or are of special interest to attack-
ers. 

 
Figure 1. Defining security as a subset of reliability 

 
LF (latent fault) and LV (latent vulnerability) 

A relationship exists between vulnerability-prone and attack-prone components 
similar to the one between fault- and failure-prone classifications. A vulnerabil-
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ity-prone component can become attack prone if an attacker (or custom-
er/security tester) is likely to exploit one or more vulnerabilities in that compo-
nent. However, there is a danger that vulnerability-finding techniques can lead 
verification efforts to waste resources in low attack risk areas—areas that may be 
adequately fortified, may be uninteresting to an attacker, or contain difficult-to-
exploit vulnerabilities. Attack-prone prediction models may help focus vulnera-
bility-finding efforts. For example, one could assume that if a component has a 
low index of vulnerability-proneness, it also has a low index of attack-proneness. 
One could also assume that most of the security problems will be in a small per-
centage of the software components according to the Pareto law [6], as illustrat-
ed in Figure 2. While this general finding is supported by statistical evidence [1], 
it may not be always true. It is quite possible that field security failures, even 
very serious ones, derive from components that are not predicted to be either 
fault- or failure-prone nor vulnerability- or attack-prone. 

 
Figure 2. Most security problems are found in a small percentage of the software 
components 

 
In this paper, we compare the predictive values of external metrics (failure report 
counts) to the predictive values of internal metrics (static analysis tool warnings, 
code churn, and SLOC) that we found in our earlier work [8]. We used data col-
lected for a large commercial software telecommunications product. Our results 
should not be interpreted as applicable to all software because they are based 
upon the data from only one, though very large, software system. 

DATA 
We analyzed a large industrial telecommunications software system containing 
over 1.2 million lines of C and C++ source code that had been deployed in the 
field for two years. Customers required that the system be highly reliable and 
secure. The system contained 38 well-defined components, each of which con-
sisted of multiple source files. Complete information necessary for our analysis 
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was only available for 25 (66%) of the components of the system, and thus the 
study focuses on those components. 

Our analyses are based on two types of software failure reports: those reported 
by testers and those reported by customers. We analyzed 1255 failure reports 
that included pre- and post-release failures. A pre-release failure is a failure dis-
covered by internal testers during robustness testing at the feature and system 
level. A post-release failure is a failure that occurred in the field and was report-
ed by a customer. However, testers did not always indicate in their failure reports 
whether a testing failure was a security problem or a not. That required a manual 
follow-up to distinguish security from non-security failures. All failure reports 
explicitly identified the component where the fault or vulnerability was fixed. 

Failure reports that were explicitly labeled as security related problems account-
ed for approximately 0.5% of the total system failures. Failure reports that were 
explicitly tagged as security problems but could do no harm were classified as 
non security-problems. For example, we did not classify a failure report as a se-
curity problem if a security mechanism had a default configuration that denied 
access to all users. For the remainder of the failure reports the first author and an 
additional research assistant, both doctoral students in software security, inde-
pendently reviewed each pre- and post-release failure report and classified a fail-
ure report as a security problem using the four decision categories listed below. 
We based our criteria on system functionality and the content of the failure re-
ports that detailed the impact. If there was no conclusive evidence that the failure 
was due to a security vulnerability, then we classified the report as a non-security 
problem. The software vendor has since fixed all of the faults in the failure re-
ports. 

We found that many reports contained the following keywords often seen in se-
curity literature: crash, denial-of-service, access level, sizing issues, resource 
consumption, data loss, flooding, integrity, overflow, null problems, overload, 
protection, and leakage. These keywords increased our suspicion that a failure 
could be a security problem but did not necessarily indicate a security problem. 
We compiled a list of these keywords and used it to match against all failure re-
ports that were not explicitly labeled as a security problem. 

We decided to use the following four categories of security failures: 

• Remote attacks. The failure reports explicitly indicated whether the failure 
was due to a remote user or machine. Pre- and post-release failure reports 
that contained security-related keywords and could be remotely initiated had 
the highest probability of an exploitable vulnerability. 
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• Insider attacks. If the failure report did not indicate that a failure was due to 
an external user or machine, we looked for attacks that did not require re-
mote access to the system. For example, one report indicated that an insider 
attack was possible if a disgruntled employee was to abuse a privilege in the 
system. 

• Audit capability. Weak or absent logging of important information was 
considered a security vulnerability. An example is inadequate logging of a 
financial transaction that may result in an attacker obtaining a service for 
free. The absence of logs has been demonstrated as a security problem when 
audits are required to identify an attack [17]. 

• Security documentation. We also considered whether fundamental princi-
ples of software security were followed. For instance, in two failure reports 
testers indicated that a problem would occur if the users were not “well-
behaved.” This breaks the principle of Reluctance to Trust [2]. Additionally, 
we looked to see whether documented descriptions of vulnerabilities could 
apply (e.g., those listed in the Common Weakness Enumeration at 
http://cwe.mitre.org), or if any documented attack patterns [9] could match 
to the software. 

A vendor security engineer audited our report and eliminated false positives (the 
general reliability faults that we claimed to be security vulnerabilities). In the 
end, 46 (3.7%) of all the failure reports were reported as having security vulner-
abilities. It needs to be noted that there is some subjectivity involved in the fail-
ure analysis, but the validation from the security engineer and the cross-
examination from the two software security students reduces error in our classi-
fication. While the other faults could facilitate an attack, they were not directly 
exploitable. Our analysis included only 3.7% of the defects reported for the 
product; therefore statistical assessment required extra attention. Failure reports 
were based upon the testers’ abilities to find problems that open the door for an 
attacker. Of course, we can only know detected faults; we do not know which 
faults still remain [5]. 

MODELS 
The models we developed are an extension of the concepts and models discussed 
in [10]. In developing our models, we manually classified the 25 components 
into failure-prone and attack-prone based on the reported severity levels of the 
failures in the components. The vendor we worked with used a four-tier hierar-
chy for classifying failure reports. A priority 1 failure (P1) is the most severe 
failure, while P4 is the least severe. A P1 or P2 failure was considered a “show 
stopper” by the vendor, so we used that threshold for our classification of failure-
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prone components. Components with no failure reports were classified as not 
failure-prone. 

We manually classified attack-prone components as those components with at 
least one pre-release test failure that was considered to be a security problem. 
We use attack-prone instead of vulnerability-prone because a tester discovered 
the vulnerability during program execution. The threshold of just one attack can 
create extraordinary damages, such as brand damage and loss of market share, 
and we thus chose one as a threshold. We could not verify from the failure re-
ports whether the security-based post-release failures reported by customers were 
attacks that led to an attacker reaching their goal. However, according to the fail-
ure reports and vendor security engineers, the vulnerability could have been ex-
ploited, and thus we considered the failure an “attack” in the context of our mod-
el construction. It is worth noting that no real attacks were reported by the 
organization for the software system. Our analysis indicated that there were ten 
attack-prone components. Four of the attack-prone components were associated 
with customer-reported security failures. 

The system we studied was scanned by the static analysis tool FlexeLint. We 
term the use of static analysis tools automated static analysis (ASA). Although 
FlexeLint is a reliability-focused ASA tool, we sought to determine if the relia-
bility alerts could be early warnings of security vulnerabilities on a per compo-
nent basis. As two additional internal metrics, we include code churn—the sum 
of added and changed source lines of code (SLOC)—and SLOC as internal met-
rics to our models. ASA can be performed early in the software life cycle and 
has been shown to be a good predictor of the fault- and failure-proneness of 
components [15, 21]. 

To construct our models, we used classification and regression trees (CART). 
We performed two CART analyses on our data, one using internal metrics to 
predict attack-prone components and the other with external metrics. Below are 
the internal and external metrics: 

1. ASA produced internal metrics of (a) count and density of null pointer, 
memory leak, and buffer overflow alerts (both audited and unaudited), (b) 
the sum of the count and density of the previous three security-based alerts, 
and (c) the count and density of all alerts. 

2. The count of SLOC and churn internal metrics. 
3. External metrics of count and densities of pre-release, post-release, and to-

tal of pre- and post-release failures (security and non-security). 
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CART was run against all components in the system that we had already manu-
ally classified. The objective was to identify predictors (metrics) that best sepa-
rate attack-prone components from not attack-prone components. 

Classification and Regression Trees 

Classification and regression trees (CART) is a statistical technique that recursively partitions data ac-
cording to X and Y values. The result of the partitioning is a tree of groups where the X values of each 
group best predicts a Y value. The leaves of the tree are determined by the largest likelihood-ratio chi-
square statistic. The threshold or split between leaves is chosen by maximizing the difference in the 
responses between the two leaves [18]. 

 
RESULTS 
The following results apply in their specificity to the environment in which they 
were obtained. However, they also support construction of more models based 
on CART, and thus provide a generalization of the concepts and the approach. 

The first model shows that 100% of the attack-prone components (with an 8% 
false positive rate) are those that have at least 17 total pre-release failures, as 
illustrated in Figure 3. The failures include security and non-security failure 
counts to show that a manual classification between security and non-security 
failures is not required for the model. While in general further splitting (differen-
tiation) with the other metrics can be done for larger component sample than we 
had, in our case it was not possible with p-values below 0.05 (95% significance 
level). The results indicate that the pre-release failure count can be a good metric 
for classifying components that also have a high probability of being attacked. 

 

7 | PREDICTIVE MODELS FOR IDENTIFYING SOFTWARE COMPONENTS PRONE TO 
FAILURE DURING SECURITY ATTACKS 

https://buildsecurityin.us-cert.gov/articles/best-practices/measurement/predictive-models-identifying-software-components-prone-to-failure-during-security-attacks%2318


 

 
Figure 3. The result of CART after using the pre-release failure count to partition 
attack-prone components 

 
A not unexpected observation is that the more failure reports that exist per com-
ponent, the more likely that some of the failures can cause security problems. It 
is also worth noting that security problems did not appear to exist in components 
that did not have many problems. From these observations, we can define a dis-
crimination threshold [20]; in this case 17 could be used as a serious warning 
about potential for security problems. In our setting, the attack-prone compo-
nents identified by pre-release testing were also associated with security-related 
failures reported in the field. Thus, the attack-prone components identified by the 
model are also useful for predicting potential attacks in the field. 

In the second model, we compare the analysis to using ASA metrics and churn, 
as shown in Figure 4. The results are similar, suggesting that the internal metrics 
are as good indicators as external metrics. Additionally, the internal metrics can 
be obtained before testing begins, and thus the model can be used to prioritize 
late-cycle testing efforts to the attack-prone components. The performance of the 
models is given in Table 1. Type I indicates the number of false positives or the 
number of not attack-prone components misclassified as attack-prone compo-
nents. Type II errors indicate the number of attack-prone components misclassi-
fied as not attack-prone. The R2 value for the model indicates how much vari-
ance the model can account for in the data. The cross-validate R2 is a test to 
determine the validity of the R2 value. If the R2 value and cross-validated R2 
value are similar, then R2 is an accurate measure of the model. Finally, the ROC 
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curve indicates how well the metrics estimate the probability that a component is 
attack-prone. 

 
Figure 4. CART with alert density and churn 

 
Table 1. Performance of the CART models 

 

 
We can use the negative binomial distribution to predict the count of pre- and 
post-release attacks per component based on the count of pre-release non-
security failures. For example, in our case the parameters were standard er-
ror=0.0108, p<.0089, value/DF=0.92. Having an estimated count of security 
problem count based on non-security failure count can indicate how many secu-
rity issues testers should look for in a component. Although not all of the faults 
in the system have surfaced to cause failures, the system had been in the field for 
two years, indicating which faults are most likely to surface. We attempted to 
assign a probability to a component that was attack-prone using logistic regres-
sion and Poisson regression, but in the context of our data the models did not 
produce probabilities that separated attack-prone from not attack-prone compo-
nents. 
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We now show where the thresholds from the models lie with respect to failure-
prone components. Figure 5 shows the failure count groupings (non-security and 
security) that best divide the components into four approximately equal segments 
of components. The green sections indicate components that were classified as 
not failure-prone or not attack-prone. The column titled “Attack-prone” shows 
the number and percentage of failure-prone components for that segment that are 
also attack-prone. We also present the quartiles as a measure of density to negate 
the effect of count of SLOC. As shown in Figure 5, density evenly distributes 
attack-prone components among failure-prone components. 

 
Figure 5. Failure-prone and attack-prone components juxtaposed according to 
failure counts and densities 

 
Failure-prone (FP), not failure-prone (NFP), attack-prone (AP), not attack-prone 
(NAP). Q is the quartile value. 

We measured correlations between non-security failures and security failures as 
shown in Table 2 as an extension to our earlier work [7]. A strong correlation 
(0.8 ? r ?1.0) indicates that an increase in non-security failures is accompanied 
with an increase in security failures. We found that non-security failure count is 
strongly correlated to security failure count (0.82). The strong correlation repre-
sents that the more failure reports present, the more likely that some could cause 
security failures. Additionally, the correlations suggest that a developer who is 
likely to inject a non-security fault is also likely to inject a security fault. 

We calculated correlations with failure density, too. However, density can dilute 
the significance of a vulnerability because a single vulnerability can have a large 
business impact for a vendor or customer. We could not find a correlation be-
tween non-security failure density and post-release security-based failures. Dif-
ferent software systems behave differently. In some systems, the count of SLOC 
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is directly related to failure count. However, in our system, SLOC was only 
moderately associated with security failure count. 

Table 2. Correlations between non-security and security failures1 

Metric Non-security 
failures 

Security 
failures 

Spearman 
rank correla-

tion 
(p-value) 

Failure 
count 

pre- and post-release pre- and post-release 0.82 
(p < .0001) 

pre-release pre-release 0.80 
(p <.0001) 

pre- and post-release post-release 0.49 
(p =.01) 

Failure 
density 

pre-release pre- and post-release 0.57 
(p =.003) 

pre-release pre-release 0.58 
(p =.002) 

pre-release, post-release, pre- and 
post-release 

post-release no correlation 

SLOC -- Post-release 0.42 
(p=0.03) 

Churn -- pre-, post-release, or 
both 

no correlation 

1 Correlations produced by SAS® 9.1.3 
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SUMMARY AND CONCLUSIONS 
We found that security failures are in the components with the highest count of 
non-security failures and that our internal metrics have nearly identical predic-
tive power as our external metrics. If software organizations can predict their 
failure-prone components, then they might consider assigning security efforts to 
the most failure-prone components. Many metrics are available for predicting 
attack-prone components and can be based on much of the work achieved in reli-
ability engineering. 
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