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Signals of Threats



Heuristic Fallout

Figure: The combinatorial explosion of query patterns highlight patterns
with zero queries. Also, notice, some patterns are similar if permuted.



Here’s the Problem

Detecting anomalies associated with threats are hard to determine
if1:

I the domain has previous query volume

I there is large variations in query volume

I there are gaps between periods with query volume

1we could also mention there are difficulties in modeling non-stationary
time-series
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Be the Adversary

Question
What if roles were reversed? Rather than observing, you were
asked to generate malicious traffic.

You might need some tools, but that’s not a problem.
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Common Discrete Distributions

Observation
If you can generate a random number then you can definitely
generate any one of these:

I Geom(p) - the geometric

I Pois(λ) - the poisson

I Bin(n, p) - the binomial

I NB(n, p) - the negative binomial



Common Discrete Distributions 2

Figure: Clockwise starting top left: geometric, poisson, negative binomial,
and binomial distributions. For given parameters 100 samples generated
per distribution.

2likely not seen in the real traffic



Common Discrete Distributions 3

Figure: Example query volume to jd.com over the last 30 days is bimodal
and therefore not one of the previous distributions.

3likely not seen in the real traffic



Mixtures of Discrete Distributions

We can mix distributions.4

Zero Inflated Distributions

f (x ; θ) = ψI0 + (1− ψ)g(x ; θ) (1)

where I0 is an indicator variable at zero, ψ ∈ [0, 1], and g(x ; θ) is
any discrete distribution from the previous slide.

4be careful to maintain the properties of a probability distribution



Spam Filtering as Mixtures of Distributions5

Figure: Other applications using mixtures of distributions are spam filters
where spam and ham can be seen a web topics. Certain words appear
more frequently within topics. [2]

5Think of an equation like this: f (x) =
∑n

i ψi fi (x) where
∑

i ψi = 1



Zero Inflated Simulations

Puzzle
Pick an urn with probability p. If you pick urn A draw 0. If you
pick urn B draw a number from a negative binomial distribution.
Start over.



Zero Inflated Simulations

Figure: Picking a zero with probability p otherwise picking a number
from a negative binomial.



24 Hour Simulations

Figure: Zero-Inflated Poissons (Zip)
with ψ = .30 along with
λ = 5, 10, 20, 30

Figure: Zero-Inflated Negative
Binomials (Zinb):
ψ = .3, n = 10, p = .01, .3, .4, .6



Real World versus Simulations

Admittedly, our little game has limitations.

Puzzle
Consider hourly counts from one day to known botnets, phishing,
dns-tunneling. Suppose, the order of the hours don’t matter, can
we simulate daily traffic with a Zinb(ψ, p, n)?6

6for some ψ, p, n that we can choose.



Simulating Malicious Traffic7

Figure: Botnet domain a1a79b359237e.hosting with

Zinb(0.13, 0.45, 3.24)

Figure: Phishing domain support-globomail.com with

Zinb(0.50, 0.25, 2.01)

7Images on left real the right simulated



Simulating Malicious Traffic8

Figure: Phishing domain universal-ads.com with

Zinb(0.83, 0.39, 9.07)

Figure: Phishing domain clientes-moopixel.com with

Zinb(0.10, 0.41, 17.81)

8Image on left real the right simulated



Simulation Fit

Note
Be skeptical, just because a simulation looked good once, it might
have been rare.



Measure of Fit to Malicious Traffic

Figure: a1a79b359237e.hosting Figure: support-globomail.com

Figure: universal-ads.com Figure: clientes-moopixel.com

Figure: QQ-Plots where tighter bands provide evidence the simualated
data agrees with the observed. Wider bands, show more uncertainty.
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Rainier Bayes on the JVM

Rainier supported by Stripe, Inc.9 and authored by Avi Bryant10 is
an open-source Bayesian Inference project written in Scala.
The appeal of this project is:

I functional API with higher order function abstractions

I efficient hierarchical model fitting for datasets fitting in
memory

I community of collaborators working on problems related to
predictive modeling and risk and fraud detection

9https://stripe.com
10https://twitter.com/avibryant



Bayesian Inference and Monte Carlo Simulations

Figure: Bayesian inference is iterative process of drawing samples from
priors (sometimes accepting and rejecting the sample) then updating a
posterior distribution. There are variety of sampling algorithms: Gibb, No
U-Turn (NUTS), Leap Frog, etc.



Example Bayesian Sampling[1] via Gibbs sampling

Bayesian Sampling with data-augmentation

1: procedure Gibbs Sampler . Estimating ψ and θ
2: ψ(0) ← u0 . u0 ∼ Uniform(0, 1)
3: θ(0) ← θ0 . random θ0

4: for t ← 1, . . . do

5: Generate z
(t)
i (i = 1, . . . , n) from (j = 1, . . . , k)

6: P(z
(t)
i = j |ψ(t−1)

j , θ
(t−1)
j , xi ) ∝ ψ

(t−1)
j f (xi |θ

(t−1)
j )

7: Generate ψ(t) from π(ψ|z(t))
8: Generate θ(t) from π(θ|z(t), x)
9: end for

10: return ψ(n), θ(n)

11: end procedure



Sampling from Mixtures

Figure: Two Zinb(ψ, p, n) where the parameters ψ, p, n have different
prior distributions.Some priors are considered non-informative and should
be handled carefully.



Hello Rainier

Listing 1: Fitting Zero Inflated Negative Binomial in Rainier
1 import com.stripe.rainier.core.{NegativeBinomial, LogNormal, Beta}
2 import com.stripe.rainier.sampler.{RNG, ScalaRNG}
3
4 case class Zinb(psi: Double, p: Double, n: Double)
5
6 object ZinbMCMC extends Serializable {
7 implicit val rng: RNG = ScalaRNG(1527608515939L)
8
9 def fit(data: Seq[Int]): Zinb = {

10 val priors = for {
11 p <− Beta(2, 5).param
12 n <− LogNormal(0, 1).param
13 } yield (p, n)
14
15 val psi = for {
16 (p, n) <− priors
17 psi <− Beta(2, 2).param
18 fit <− NegativeBinomial(p, n).zeroInflated(psi).fit(data)
19 } yield psi
20
21 // ... your decide
22 // ... call priors.sample() or psi.sample() for sequence of values
23
24 Zinb(fitPsi, fitP, fitN)
25 }
26 }
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Massive Parallelization

Trick
Using Apache Spark we can distribute our simulations and run as
many as we would like in parallel.11

11http://spark.apache.org



Massive Parallelization

Figure: Passing chunks of the file(s) into rdd partitions, in Spark,
distributes the Rainier simulations.



Puzzle
Given a file where each row contains a (domain, day, Seq[Int])
write a program using Rainier to fit a zero inflated negative
binomial distribution.



Hello Spark and Rainier 12

Listing 2: Dispatching the Zinb simulation (to days worth simulating).
1 trait Event {
2 val name: String
3 val time: String
4 }
5
6 case class Dormant(name: String, time: String) extends Event
7 case class Singleton(name: String, time: String, value: Int) extends Event
8 case class MultiState(name: String, time: String, values: Seq[Int]) extends Event
9

10 def zinbDispatcher(event: Event): Zinb = {
11 event match {
12 case Dormant( , ) => Zinb(0.0, 0.0, 0.0)
13 case Singleton( , , value) => Zinb(1/2.40, 1/2, value∗2)
14 case MultiState( , , values) => ZinbMCMC.fit(values)
15 }
16 }

12Completing the example: sc.textFile(pathToFile).map(assignState).map(zinbDispatcher)



Gotcha
Common errors occur with serialization of the rainier simulations.
The previous example, not by accident, wrapped the Zinb
simulation in a Serializable object. Another possibility, is to
use:

com.twitter.chill.Meatlocker(f)

chill is shipped with Spark.
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Scheduling the Processing

Major challenges in deciding:

I How many minutes/hours/days should be fit.

I How long between fitting each signal.



Scheduling Windows

Figure: Some simulations can be run at non-overlapping intervals,
overlapping intervals, and varied time windows.



Notes on Aggregation and Disaggregation

Note
The idea of aggreagation over a large window of time that is
subsequently compared to an aggregation over a small window of
time has been studied in problems related to itermittant demand.
[4]
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Measuring Risk

Goal
Exploit the parameterization of the fitted models to define a
statistical measure of rarity.

Examples of common statistical tests:

I Given a data point xi and a probability distribution f (x ; θ)
compute the p-value.

I Given data points: x1, . . . , xn and two models
f (x ; θ1), g(x ; θ2) compute the likelihood that the points are
from one distribution rather than another.



Two Risk Measures

Figure: Parameters fit to previous observations of a signal can be used to
analyze new observations in batch or streaming ways.



Risk Scores

Observation
We also want to accumulate risk-measures over time where more
recent events contribute more to the score than older events. We
can do this using exponential moving averages.

Given a new risk measure Xi at time i then update a
time-dependent risk score S as follow:

Si = Xiw + (1− w)Si−1 (2)

with w ∈ [0, 1].



Time-Dependent Risk Measures

Figure: Example of trending historical µi , σi where more recent values
contribute more.



Sample Pipeline

Figure: Example data pipeline where the most recent simulations are
input to a historical database containing previous fitted parameters.
Then, finally, a risk-score job fires off by reconciling the historical with
the most recent simulation updating a chosen risk score.



Risk All Wrong13

Figure: How not to create a risk score. Here the the risk-score per
parameter is trended per weekday causing inappropriate correlations

13Additionally, there are good reasons why not to trend the parameters of a
model.
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Discrete Pobability Distribution Updates: Adaptive
Thresholding

Puzzle (Lambert, et al [3])

Update a negative binomial distribution NB(p, n) from a stream of
counts: x1, x2, x3, . . . .



Adaptive Thresholding

The trick is that not all values should contribute to updating the
underlying parameters to NB(p, n). In other words, outliers should
be corrected or handled robustly.



Adaptive Thresholding

Two points worth exploring in the methods we’ve discussed are:

I Updating the distributions NB(pi , ni ) over time

I Tracking outlier significance
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