Brenden Bishop

January 8, 2019

- 1 Introduction
 - First things first
 - Framing the problem
- 2 Finding Anomalies
 - Density estimation
 - Scoring
- 3 Example
- 4 Conclusion

First things first

Introduction

New presentation who dis?

New presentation who dis?

■ My formal training was in quantitative psychology and statistics at The Ohio State University, graduated 2017

New presentation who dis?

- My formal training was in quantitative psychology and statistics at The Ohio State University, graduated 2017
- Started at Columbus Collaboratory, working on a variety of projects, quite a bit of prototyping

New presentation who dis?

- My formal training was in quantitative psychology and statistics at The Ohio State University, graduated 2017
- Started at Columbus Collaboratory, working on a variety of projects, quite a bit of prototyping

■ Love cyber projects because, by and large, one can actually measure all the stuff required to answer the question

Example

onclusion R

Hunting

■ Hunting has become an integral component of mature cyber security operations

- Hunting has become an integral component of mature cyber security operations
- Network defenders spend a portion of their time hunting for vulnerabilities, misconfigurations, or previously unnoticed security events

- Hunting has become an integral component of mature cyber security operations
- Network defenders spend a portion of their time hunting for vulnerabilities, misconfigurations, or previously unnoticed security events
- The practice has evolved beyond grepping randomly through logs

- Hunting has become an integral component of mature cyber security operations
- Network defenders spend a portion of their time hunting for vulnerabilities, misconfigurations, or previously unnoticed security events
- The practice has evolved beyond grepping randomly through logs
- Hunts can now be seeded using ML/AI/Statistical models, leading to a directed search rather than a random walk

Framing the problem

000

Sounds simple enough, but...

 Introduction
 Finding Anomalies
 Example
 Conclusion
 References

•••

Framing the problem

Sounds simple enough, but...

Challenges

Challenges

Frequent challenges when finding anomalies:

1 "Find anything strange on the network" is not sufficiently specific

Challenges

Frequent challenges when finding anomalies:

1 "Find anything strange on the network" is not sufficiently specific (neither is "Find any lateral movement.")

Challenges

- 1 "Find anything strange on the network" is not sufficiently specific (neither is "Find any lateral movement.")
 - Statistics requires problem identification, consideration of available variables, and understanding how observations arise

Challenges

- 1 "Find anything strange on the network" is not sufficiently specific (neither is "Find any lateral movement.")
 - Statistics requires problem identification, consideration of available variables, and understanding how observations arise
- 2 Cyber and statistics/data science folks can talk past one another

Challenges

- "Find anything strange on the network" is not sufficiently specific (neither is "Find any lateral movement.")
 - Statistics requires problem identification, consideration of available variables, and understanding how observations arise
- Cyber and statistics/data science folks can talk past one another
- 3 Unsupervised learning is prone to a high false alarm rate; Machine Learning/Artificial Intelligence/Automated-Inference are not immune

Example

onclusion

Framing the problem

Addressing challenges

Scope problems appropriately (e.g. Find strange outbound connections to cloud storage.)

000

- 1 Scope problems appropriately (e.g. Find strange outbound connections to cloud storage.)
- Cyber and statistics/AI/ML experts must iterate collaboratively; interdisciplinary teams are optimal for innovation

000

- 1 Scope problems appropriately (e.g. Find strange outbound connections to cloud storage.)
- Cyber and statistics/AI/ML experts must iterate collaboratively; interdisciplinary teams are optimal for innovation
- 3 Turn big data into managable data, and, where possible, turn unsupervised problems into supervised. Collect data and validate models

000

- Scope problems appropriately (e.g. Find strange outbound connections to cloud storage.)
- Cyber and statistics/AI/ML experts must iterate collaboratively; interdisciplinary teams are optimal for innovation
- 3 Turn big data into managable data, and, where possible, turn unsupervised problems into supervised. Collect data and validate models (practice security as a science)

000

- 1 Scope problems appropriately (e.g. Find strange outbound connections to cloud storage.)
- Cyber and statistics/AI/ML experts must iterate collaboratively; interdisciplinary teams are optimal for innovation
- 3 Turn big data into managable data, and, where possible, turn unsupervised problems into supervised. Collect data and validate models (practice security as a science)
- The remainder of the talk essentially focuses on item three

■ Cyber security data is particularly well suited to statistical inference

- Cyber security data is particularly well suited to statistical inference
 - Logs are typically a census of network activity, we have the population

- Cyber security data is particularly well suited to statistical inference
 - Logs are typically a census of network activity, we have the population
- Probability measures offer single-number summaries of all available information; anomalies are events with low probability

- Cyber security data is particularly well suited to statistical inference
 - Logs are typically a census of network activity, we have the population
- Probability measures offer single-number summaries of all available information; anomalies are events with low probability
- Building an anomaly scoring model is tantamount to estimating a probability distribution

- Cyber security data is particularly well suited to statistical inference
 - Logs are typically a census of network activity, we have the population
- Probability measures offer single-number summaries of all available information; anomalies are events with low probability
- Building an anomaly scoring model is tantamount to estimating a probability distribution
- Models can be validated during the course of regular hunting

Some fundamentals

Network activity can be quantified (e.g. time, bytes sent, bytes received, protocol, connection type)

- 1 Network activity can be quantified (e.g. time, bytes sent, bytes received, protocol, connection type)
- 2 Quantified information can be stored in a numeric matrix with each row representing a single multivariate observation

- 1 Network activity can be quantified (e.g. time, bytes sent, bytes received, protocol, connection type)
- 2 Quantified information can be stored in a numeric matrix with each row representing a single multivariate observation
- 3 The observations are realizations from some probability distribution

- 1 Network activity can be quantified (e.g. time, bytes sent, bytes received, protocol, connection type)
- 2 Quantified information can be stored in a numeric matrix with each row representing a single multivariate observation
- 3 The observations are realizations from some probability distribution
- 4 Anomalies are aberrant rows, from low-density regions

Estimation

 Statisticians have been improving density estimation for around a century

Estimation

- Statisticians have been improving density estimation for around a century
- Kernel density estimators allow nonparametric estimation of any p dimensional probability distribution

Estimation

- Statisticians have been improving density estimation for around a century
- Kernel density estimators allow nonparametric estimation of any p dimensional probability distribution
- Though in practice, whenever p is larger than about 5 estimation can become quite burdensome

Introduction

Estimation

- Statisticians have been improving density estimation for around a century
- Kernel density estimators allow nonparametric estimation of any p dimensional probability distribution
- Though in practice, whenever p is larger than about 5 estimation can become quite burdensome
- One promising approach that circumvents this effective dimensionality constraint is the use of vine copulas

Example

Density estimation

Vine copulas in a nut shell

Vine copulas in a nut shell

 Copulas can partition multivariate densities into the product of their marginals and a component which captures all dependencies

Vine copulas in a nut shell

- Copulas can partition multivariate densities into the product of their marginals and a component which captures all dependencies
- Vine copulas split the dependency portion into p(p-1)/2bivariate copula densities, decoupling convergence speed and dimension

Vine copulas in a nut shell

- Copulas can partition multivariate densities into the product of their marginals and a component which captures all dependencies
- Vine copulas split the dependency portion into p(p-1)/2 bivariate copula densities, decoupling convergence speed and dimension
- tl;dr One can estimate complicated multivariate distributions fairly accurately and quickly

Scoring

Scoring

■ Possessing an estimate of a distribution allows for the evaluation of the estimated density for novel values

Scoring

- Possessing an estimate of a distribution allows for the evaluation of the estimated density for novel values
- One can assign a probability to each record log and sort low probability events to the top

Finding Anomalies

Scoring

- Possessing an estimate of a distribution allows for the evaluation of the estimated density for novel values
- One can assign a probability to each record log and sort low probability events to the top
- The most rare events can be given to a hunter, beginning iterative evaluation of the model

■ We'll use a subset of publicly available data from Kent [2015]

Raw data

- We'll use a subset of publicly available data from Kent [2015]
- The full data represents 58 consecutive days of events from Los Almos National Laboratory corporate, internal network (csr.lanl.gov/data/cyber1/)
- Data is de-identified, even the time variable

Raw data

- We'll use a subset of publicly available data from Kent [2015]
- The full data represents 58 consecutive days of events from Los Almos National Laboratory corporate, internal network (csr.lanl.gov/data/cyber1/)
- Data is de-identified, even the time variable
- Say one is looking for anomalous, successful authentication events
 - 1,C625\$@D0M1,U147@D0M1,C625,C625,Negotiate,Batch,Log0n,Success
 - 1,C653\$@DOM1,SYSTEM@C653,C653,C653,Negotiate,Service,LogOn,Success
 - 1,C660\$@DOM1,SYSTEM@C660,C660,C660,Negotiate,Service,LogOn,Success

Wrangle data and analyze

■ Dummy code login-type and authentication-type factors, and engineer other desired features

Wrangle data and analyze

- Dummy code login-type and authentication-type factors, and engineer other desired features
- Wrangled data set is 13 dimensional binary

Wrangle data and analyze

■ Dummy code login-type and authentication-type factors, and engineer other desired features

Example

- Wrangled data set is 13 dimensional binary
- Employ a continuous convolution to allow for kernel density estimation

Example

Wrangle data and analyze

- Dummy code login-type and authentication-type factors, and engineer other desired features
- Wrangled data set is 13 dimensional binary
- Employ a continuous convolution to allow for kernel density estimation
- Use the kdevine or vinecopular R libraries to estimate the density

Just that easy

```
vinedat <- dat[sample.int(nrow(dat), 10e3), -c(1:5)]</pre>
    vinedatcc <- cctools::cont conv(vinedat)</pre>
    dest <- kdevine(vinedatcc, xmin = rep(-.5, 13),
    xmax = rep(1.5, 13), cores = 6)
    scoreObs <- function(X){out <- cbind(X, dkdevine(X, dest))}</pre>
    f <- sort(rep len(1:2000, length.out = nrow(datcc)))</pre>
    datcclist <- lapply(unique(f), function(i){datcc[f == i, ]})</pre>
    outlist <- parallel::mclapply(datcclist, scoreObs, mc.cores = 5)
    scored <- do.call("rbind", outlist)</pre>
12
    results <- dat[, 1:5] %>%
13
14
      mutate(lpd = log(scored[, 14])) %>%
      arrange(lpd)
```


■ With minimal investment, defenders can easily build probability models for any logs they want, not bound by existing tools

- With minimal investment, defenders can easily build probability models for any logs they want, not bound by existing tools
- Models be generated on the fly, one-offs for a given hunt

- With minimal investment, defenders can easily build probability models for any logs they want, not bound by existing tools
- Models be generated on the fly, one-offs for a given hunt
- Models can be refined/tuned as hunters check examine outputs and iterative development continues

- With minimal investment, defenders can easily build probability models for any logs they want, not bound by existing tools
- Models be generated on the fly, one-offs for a given hunt
- Models can be refined/tuned as hunters check examine outputs and iterative development continues
- If at some point a model is found to have a satisfactory hit-rate, the anomalies are interesting, then one create an automatic detector

Thank you, kindly.

- K. Aas, C. Czado, A. Frigessi, and H. Bakken. Pair-copula constructions of multiple dependence. *Insurance: Mathematics and economics*, 44(2):182–198, 2009.
- A. D. Kent. Comprehensive, Multi-Source Cyber-Security Events. Los Alamos National Laboratory, 2015.
- T. Nagler. Kernel methods for vine copula estimation. 2014.
- T. Nagler. A generic approach to nonparametric function estimation with mixed data. *Statistics & Probability Letters*, 137:326–330, 2018.
- T. Nagler and C. Czado. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas. *Journal of Multivariate Analysis*, 151:69–89, 2016.