
1
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Scaling Software
Testing & Evaluation

SEI CERT Division

Cyber Security Foundations Directorate

2
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of

the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless

designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE

MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and

distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required

for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-1194

3
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

The Problem

4
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Complex Software Is Business and Mission Critical

8%

80%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2

% Airplane Function in Software

1,000

9,000,000

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 2

Avionics SLOC

Evolution of avionics size and function from F-4A (1960) to F-35 (2000):*

*Final Report, NASA Study on Flight Software Complexity, Mar. 2009; Mel Conway, “Tower of Babel and the Fighter Plane,” Oct. 9, 2013.

5
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Catching Software Faults Early Saves Money

Faults account for 30%‒50% of total software project costs.*

*Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies.

6
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Enduring Software Challenges:
Scaling Software Testing and Evaluation

Affordable

Be Affordable such that the cost of acquisition

and operations, despite increased capability,

is reduced and predictable

Trustworthy

Be Trustworthy in construction, correct in

implementation, and resilient in the face of

operational uncertainties

Capable

Bring Capabilities that make new missions

possible or improve the likelihood of success

of existing ones

Timely

Be Timely so that the cadence of fielding

is responsive to and anticipatory of the

operational tempo of the warfighter

7
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Testing

8
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Testing Methods

Method Strengths Weaknesses

Architectural/Design Analysis Early identification of costly defects Conceptual and early

Inspection & Reviews Effective at identifying nuanced
defects that require developer context

Manual (expensive, slow)

Static Analysis More thorough coverage High false-positive rates
Generally requires buildable
source

Dynamic Analysis Very low false-positive rate Difficult to get good coverage

Formal Methods Proves software attributes Requires significant time and space
resources, plus model validation is
challenging; significant manual
effort

Simulation Useful for gaining validation
confidence

Testbed setup can be costly

9
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Testing Purposes and Evolution

Testing Purposes

• Unit testing

• Integration/system testing

• Regression testing

• Acceptance testing

Evolution (as possible)

• Manual inspection

• Tool-supported

• Integrated

• Automated testing

• Automated repair

10
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Secure DevOps

DevSecOps is a model

integrating the software

development and

operational process

considering security

activities: Requirements,

Architecture, Design,

Coding, Testing, and

Delivering.

11
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Scaling Testing

SEI is researching how to make testing (where possible)

• less expensive

• more precise

• automatable

SEI also researches scalable automated repairs, following testing.

12
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Predicting Security Flaws through

Architectural Flaws

13
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Enduring Software Challenges:
Predicting Security Flaws through Architectural Flaws

Affordable

Be Affordable such that the cost of acquisition

and operations, despite increased capability,

is reduced and predictable

Trustworthy

Be Trustworthy in construction, correct in

implementation, and resilient in the face of

operational uncertainties

14
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Problem

Software security defects risk exposure and $$$.

Existing analysis methods have limitations:

• Some security flaws influenced by code structure and module relationships.

• Not easily found or fixed locally.*

*“Analyzing Security Bugs from an Architectural Perspective,” Kazman et al., 2017.

15
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Impact of Issues Involving >10 Files (Chromium)

Potential Impact: ~50% of the total effort (LoC) to fix security issues came

from fixing <10% of the security issues.*

*“Analyzing Security Bugs from an Architectural Perspective,” Kazman et al., 2017.

16
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Approach – Today

17
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Approach – Research and Vision

18
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Progress and Results

Chromium, OpenSSL, and Mozilla analyzed

• 6000 Chromium issues analyzed after commits (50% security / 50% non-security)

• 1600 Chromium issues analyzed before/after commits

• Analyzing entire Chromium project over entire per-file history

• Analyzing Chromium issue chains for common files

Tools

• Scripts for data extraction of code repository and issue logs

• Scripts for filtering, categorizing, and analyzing data

Findings (anecdotal; still analyzing for statistical significance)

• Architectural flaws have been strongly correlated with security flaws

at a project-wide level

• Still iterating on precision of defining architectural flaws for correlative analysis

19
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Rapid Construction of Accurate

Automatic Alert Handling System

20
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Enduring Software Challenges: Rapid Construction of
Accurate Automatic Alert Handling System

Affordable

Be Affordable such that the cost of acquisition

and operations, despite increased capability,

is reduced and predictable

Trustworthy

Be Trustworthy in construction, correct in

implementation, and resilient in the face of

operational uncertainties

Capable

Bring Capabilities that make new missions

possible or improve the likelihood of success

of existing ones

Timely

Be Timely so that the cadence of fielding

is responsive to and anticipatory of the

operational tempo of the warfighter

• Affects state-of-the-art and state-

of-the- practice for static analysis

• Novel use of test suites for

classification

• Effect: more secure code at same

cost

21
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Overview

22
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

FY16-18 Static Analysis Alert Classification Research

FY16

• Issue addressed: classifier

accuracy

• Novel approach: multiple

static analysis tools as

features

• Result: increased accuracy

FY17

• Issue addressed: too little

labeled data for accurate

classifiers for some

conditions (CWEs, coding

rules)

• Novel approach: use test

suites to automate

production of labeled

(True/False) alert archives

for many conditions

• Result: high accuracy for

more conditions

FY18

• Issue addressed: little use

of automated alert

classifier technology

(requires $$, data, experts)

• Novel approach: develop

extensible architecture with

novel test-suite data method

• Result: extensible

architecture, API definition,

software to instantiate

architecture, adaptive

heuristic research

23
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Code

First public SCALe release
(2.1.4)

API definition (swagger) and code development

SCALe v2.1.3.0 static analysis alert auditing tool

• New features for prioritization and classification

- Fused alerts, CWEs, new determinations (etc.) for collaborators to generate data

• Released to collaborators Dec. 2017–Feb. 2018

• GitHub publication Aug. 2018

SCALe v3.0.0.0 released Aug. 2018 to collaborators

Develop and test classifiers. Novel work includes

• enabling cross-taxonomy test suite classifiers (using precise mappings)

• enabling “speculative mappings” for tools (e.g., GCC)

24
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Non-code Publications & Papers FY18

Architecture API definition and new SCALe features

• Special Report: “Integration of Automated Static Analysis Alert Classification and Prioritization with Auditing

Tools” (Aug. 2018)

- Technical Report: public version (Sep. or Oct. 2018)

• SEI blog post: “SCALe: A Tool for Managing Output from Static Code Analyzers” (Sep. 2018)

Classifier development research methods and results

• Paper “Prioritizing Alerts from Multiple Static Analysis Tools, using Classification Models,” SQUADE (ICSE

workshop)

• SEI blog post: “Test Suites as a Source of Training Data for Static Analysis Alert Classifiers” (Apr. 2018)

• SEI Podcast (video): “Static Analysis Alert Classification with Test Suites” (Sep. 2018)

• In-progress conference papers (4): precise mapping, architecture for rapid alert classification, test suites for

classifier training data, API development

Precise mappings on CERT C Standard wiki

• CERT manifest for Juliet (created to test CWEs) to test CERT rule coverage

• Per-rule precise CWE mapping

For collaborators, others to

implement API calls or use new

SCALe

Explain research methods and results

Static analysis tool developers

can automatically test for CERT

rule coverage (some rules)

For code flaws you care about, understand your tool coverage

25
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Analysis of Juliet Test Suite: Initial CWE Results

Alert Type Labeled Fused Alerts

(counts a fused

alert once)

TRUE 13,330
FALSE 24,523

Big savings: manual audit of 37,853 alerts from non-test-

suite programs would take an unrealistic minimum of

1,230 hours (117 seconds per alert audit*).

• First 37,853 alert audits wouldn’t cover many conditions

(and sub-conditions) covered by the Juliet test suite!

• Need true and false labels for classifiers.

• Realistically: enormous amount of manual auditing

time to develop that much data.

These are initial metrics (more data as we use more tools

and test suites).

Lots of new data for

creating classifiers

(37,853 labeled alerts)

*Nathaniel Ayewah and William Pugh, "The Google FindBugs Fixit," Proceedings of the 19th

International Symposium on Software Testing and Analysis, ACM, 2010.

26
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Juliet Test Suite Classifiers: Initial Results (Hold-out Data)

Classifier Accuracy Precision Recall

rf 0.938 0.893 0.875

lightgbm 0.942 0.902 0.882

xgboost 0.932 0.941 0.798

lasso 0.925 0.886 0.831

Total

population
Accuracy =

Σ True positive + Σ True negative

Σ Total population

Predicted

condition true
Precision =

Σ True positive

Σ Predicted condition true

Predicted

condition false
True positive rate,

recall, sensitivity =

Σ True positive

Σ (Condition true)
False positive

rate =

Σ False positive

Σ (Condition false)

Actual condition

Predicted

condition

True positive

False negative

False positive

True negative

Condition true Condition false

27
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Architecture

28
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Architecture Development

Representational State Transfer (REST)

• Architectural style that defines a set of constraints and properties based on HTTP

• RESTful web services provide interoperability between systems

• Client-server

We chose to develop a RESTful API.

• Swagger/OpenAPI open-source development toolset

- Develop APIs

- Auto-generate code for server stubs and clients

- Test server controllers with GUI

- Wide use (10,000 downloads/day)

29
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

SCALe Development for Architecture Integration

SCALe will make UI Module API calls in prototype system.

• Other alert auditing tools (e.g., DHS SWAMP) also can instantiate UI Module API.

30
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Continue FY19: Classifier Research and Development

Using test suite data for classifiers, research:

• Adaptive heuristics:

- How classifiers incorporate new data

- Test suite vs. non-test-suite data

- Weighting recent data

• Semantic features for cross-project prediction

- Test suites as different projects

31
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

FY19 Next Steps

Collaborator API implementation

More collaborator audit archive data sharing

Metrics of success:

• Compare classifier precision on DoD datasets (cross-validation on test set):

- Test with semantic features

- Variations of adaptive heuristics

• Test fault detection rates by tracking true positives detected versus number

of manual alert inspections

• Goal: minimum 60% classified e-TP or e-FP with 95% accuracy against

collaborator data

• Test architecture generality using varied plug-ins to API

32
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Can Deep Learning Predict

Security Defects in Synthetic

Code?

33
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Enduring Software Challenges: Can Deep Learning
Predict Security Defects in Synthetic Code?

Trustworthy

Be Trustworthy in construction, correct in

implementation, and resilient in the face of

operational uncertainties

Capable

Bring Capabilities that make new missions

possible or improve the likelihood of success

of existing ones

• Developed, sa-bAbI, a new

software assurance benchmark

and training set to be included in

NIST Software Assurance

Reference Dataset (SARD)

• Identified next steps for AI in

software assurance: better

representations of code and

different learning strategies

34
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Can Deep Learning Predict Security Defects in Synthetic Code?

Problem: Predicting security defects in source code is of significant national security

interest (e.g., NIST SAMATE), but existing static analysis tools have unacceptable

performance.*

• Artificial intelligence approaches may improve performance, but

• Existing software assurance datasets have limited variability in examples of defects

(e.g., Juliet, SARD, IARPA Stone Soup, LAVA)

Our Approach:

• Develop a new software assurance dataset: sa-bAbI

• Benchmark state-of-the-art artificial intelligence system and existing static analysis

tools on sa-bAbI

*Oliveira et al., 2017.

35
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

sa-bAbI: “Baby AI” Software Assurance Tasks

Modeled after bAbI*

Code generator for detecting buffer

overflow errors

Intentionally very simple

• Valid C code

• Conditionals

• Loops

• Unknown values such as rand()

Complements existing software

assurance datasets for training AI

Will be included in NIST SARD

Conditional Reasoning Example

char entity_7[27];

entity_1 = 45; entity_8 = 74;

if(entity_8 > entity_1){

entity_8 = 64;

} else {

entity_8 = 17;

}

entity_7[entity_8] = ‘i’;

Is the last access safe? No.
*Weston et al., 2015

36
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Results: Deep Learning Cannot Do This Yet

The state-of-the-art AI system can

be competitive with existing static

analysis engines, but it fails to

generalize.

sa-bAbI illuminated why:

We need better

• representations of code and

• neural integer computation

See arXiv.org for

more details.

37
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Status of Available Technology

38
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Enduring Software Challenges:
Status of Available Technology

Affordable

Be Affordable such that the cost of acquisition

and operations, despite increased capability,

is reduced and predictable

Trustworthy

Be Trustworthy in construction, correct in

implementation, and resilient in the face of

operational uncertainties

Capable

Bring Capabilities that make new missions

possible or improve the likelihood of success

of existing ones

Timely

Be Timely so that the cadence of fielding

is responsive to and anticipatory of the

operational tempo of the warfighter

• Automated Code Repair to Ensure

Memory Safety: inexpensive process

results in more-secure code

• Secure coding standards: provide

coverage target for static analysis

tools, training for developers

• SCALe (static analysis alert auditing

tool): provide implemented research

features for others to use or adapt

into their own tools

39
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Available Technology: Secure Coding Standards

Curated wisdom from thousands of contributors on community wiki since 2006

• Use the standards to develop analysis tools and to train developers.

SEI CERT C Coding Standard

• Free PDF download:

cert.org/secure-coding/products-services/secure-coding-download.cfm

• Basis for ISO TS 17961 C Secure Coding Rules

SEI CERT C++ Coding Standard

• Free PDF download (Released March 2017):

cert.org/secure-coding/products-services/secure-coding-cpp-download-

2016.cfm

CERT Oracle Secure Coding Standard for Java

• Latest guidelines available on CERT Secure Coding wiki:

securecoding.cert.org

http://cert.org/secure-coding/products-services/secure-coding-download.cfm
http://cert.org/secure-coding/products-services/secure-coding-cpp-download-2016.cfm
https://www.securecoding.cert.org/

40
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

If a condition of a program violates a CERT rule R and also exhibits a

CWE weakness W, that condition is in the overlap.

Available Technology: Secure Coding Standards (cont’d)

Precise mappings: Defines what kind of relationship, and if

overlapping, how. Also when mapped and which versions.

Imprecise mappings
(“some relationship”)

Precise mappings

Precise mappings on CERT C Standard wiki

1. Per-rule CWE precise mapping

• “CERT-CWE Mapping Notes” (set notation)

• Table with taxonomy and relationship detail

2. Metadata for using Juliet Test Suite to test

CERT rule coverage

• Plan: create similar metadata for

STONESOUP and other test suites

Static analysis tool

developers can

automatically test for

CERT rule coverage

(some rules)

For code flaws

you care about,

understand your

tool coverage

41
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Available Technology: SCALe Static Analysis Alert Auditing Tool

Used as a research platform

• Extend with new features

• Collaborators give us feedback

• Collaborators generate data

required for our classifier

research

Over last 3 years, new SCALe

features are for classification and

prioritization research.

• GitHub public release (SCALe

v2), Aug. 2018

• SCALe v3 for research project

collaborators

42
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Available Technology: SCALe Static Analysis Alert Auditing Tool

Recent features include

• Alert fusion for {filepath, line, condition}

reduces auditor effort

• Determinations history

• Automatically cascaded determinations from

previous audits

• Classification schemes

• Prioritization schemes with mathematical

formulas user can create and/or use

• User field uploads

43
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Available Technology: Automated Code Repair to Ensure
Memory Safety

Goal: Take a C codebase and repair potential bugs to enable a proof of memory safety.

What about distinguishing false alarms from true vulnerabilities?

• We simply apply a repair to all potential memory-safety vulnerabilities, at a cost of

an often small runtime overhead. (Manual tuning might be needed for

performance-critical parts.)

Available technology: Repair of integer overflows that lead to buffer overflows.

• Inferred specification: inequality comparisons involving array indices or bounds

should behave as if normal (non-overflowing) arithmetic were used.

- Includes malloc.

- Excludes hash functions and crypto, where modular arithmetic is desired.

• We repair the code to satisfy this spec where possible.

• Tested on older versions OpenSSL and Jasper. Found and repaired known vuls

with CVEs.

