
1
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Modern Software Lifecycle Practices

Dr. Ipek Ozkaya, Principal Researcher

Dr. Sam Procter, Researcher

2
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of

the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless

designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE

MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY

OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES

NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and

distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required

for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-1197

3
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

DoD Priorities

Executing system development on

schedule and cost

Rapidly evolving systems to exploit

new technologies

4
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

DoD Challenges in Modern Software Lifecycle Practices

• Manual practices do not scale

• Selecting best-fit software development and analysis methods is not trivial

• Software process metrics do not reflect product realities

• Critical qualities like safety, security, and sustainability are afterthoughts

• Evolving legacy software with new technology is time-consuming, costly, and error-

prone

5
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

The SEI Approach

Increase automation to enable repeatable, scalable

software lifecycle practices:

• Apply model-based techniques to enable safe and

secure system development while decreasing uncertainty

• Implement tool-supported system analysis to collect

reliable data and enable just-in-time response to

problems

• Develop software data analytics, such as applying AI

techniques to software data, to improve decision making

• Rapidly pilot interim results with government, industry,

tool vendors, and industry partners

Trustworthy

Affordable

6
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Integrating Safety and Security

Engineering for Mission-Critical

Systems

7
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

DoD Challenges in Critical-System Safety and Security

Problem: Modern safety-

critical systems are created

by networking heterogeneous

components together

State-of-the-art functionality

now often requires exposure

of those networks to the

outside world, so security has

become a concern

Solution: AADL is an internationally standardized architecture modeling language with a 15-

year history of successful use in commercial, industrial, academic, and military applications

How should security analysis and design techniques be integrated with their safety-focused

counterparts?

8
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

AADL excels at analyzing component-based systems

by

• integrating annotated components

• running system-level analyses

9
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Safety and Architecture

Problem: Safety problems

are created early and caught

late

Solution: ALISA is a tool kit

and process for addressing

system safety at the

architecture level

Safety is evaluated in the

same way as other quality

attributes: components are

annotated, and then the

integrated system is

analyzed

Source: “Architecture-Led Safety Process,” CMU/SEI-2016-TR-012

10
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Security and Architecture

Previous security architecture research,

such as the Multiple Independent Levels

of Security (MILS), focused on

separating security policy and

enforcement

We added support for MILS within

AADL/OSATE as well as code

generation from models with security

policies:

1. Security policy specification

2. Security policy enforcement

3. Generation and deployment of

compliant systems

Security policy vulnerabilities:

Analyze information flows

Security enforcement vulnerabilities:

Analyze deployment mechanisms

11
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Modeling Security Requirements in the Context of Safety

Approach: Use effects-focused analysis

and tooling

• When are various techniques

appropriate?

- Biba model (integrity)

- Bell–LaPadula (confidentiality)

• What “building blocks” should be used?

- examples: encryption, partitioning,

checksums

• How should requirements be verified?

Measurement: Proposed user study (in

FY 20) to measure qualities of design

and analysis guidance

• Objective qualities

-Number of issues found / avoided

-Time required

• Subjective qualities

-Quality of issues found / avoided

-Complexity

12
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Using Theory to Guide Tool Development

Approach: Use fault-injection tooling

• Fault-injection pairs naturally with an

effects focus

• Collaborators are building a large

simulation and verification environment

to enable this testing

Measurement:

• Current AADL can describe component

behavior in the presence of errors

• This project will let us verify those

descriptions

13
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Using Software Analytics to

Analyze Technical Debt

14
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

DoD Challenges in Managing Technical Debt

Problem: Government acquirers need capabilities to assess technical debt to manage

software schedule and trustworthiness

• Differentiate between intentional and unintentional debt

• Prioritize which debt to pay down

• Quantify consequences of technical debt as it remains in the system

Solution: Technical debt analytics will integrate data from multiple sources (code,

tickets, code commits) to identify design issues with potential long-term adverse

consequences

15
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Automating the Identification of Technical Debt

[2] TD analytics

CMU SEI Approach

1. Build a classifier to

detect technical debt

discussions in issue

trackers

2. Augment static code

analysis rules to identify

design violations

3. Correlate with commit

history data to record

candidate technical debt

items

[1] Issues

Legacy code
[3] Prioritized technical

debt items

Partners

• U.S. Air Force Life Cycle Management Center

• U.S. Food and Drug Administration

16
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Advancing the State of the Art

Developed a TD classifier

using machine learning:

Our classifier estimates at least

16% of developer discussions

are related to technical debt

(data from Chromium open-

source issues)

Created design violation

analysis augmenting an open-

source static code analyzer:

Our algorithm assists in

focusing on problematic files,

reducing the space of

investigation by about 95%

Prioritized candidate

technical debt items with

supporting evidence

Development teams agree with

80% of the prioritized items as

representing technical debt

17
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Detecting Discussions of Technical Debt with Machine Learning

Approach: Uses machine learning, focusing

on

• modeling with boosting algorithms to build

the weighted average of many classification

trees – iteratively improving weak classifiers

and creating a final strong classifier

• active learning pipeline and iterating over

the data set to use 1,934 labeled technical

debt examples

• feature engineering to combine discussion

length, n-grams, key phrases, concepts, and

document context

Using Chromium project with 475,000 issues

Performance metrics

18
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Automating Technical Debt Analysis on Code

Approach:

Combine data from static code analysis and commit history analysis to locate areas of

code that hold candidate technical debt items (TDI)

• Augment static code analysis with design rule analysis

• Correlate with commit history profiles of files co-changing and co-committed

• Apply to open-source as well as collaborator data

19
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Developing Analysis Rules and Design Topics

Applied design rule extraction to nine collaborator projects and followed three for

longitudinal analysis:

• Teams consistently rate maintainability issues as low priority; in fact, teams change the priority

of rules to remove the noise

• The algorithm can identify design problems such as logging, exception handling, and

synchronization that should have been acted on earlier

20
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Example Candidate Technical Debt Items

Hadoop: 12,365 files 61 files; 43 clusters

TDI candidate Evidence Design paradigm Technical debt issue

DFSA***.java Top in DR violations (282) Logging should be centralized to avoid security and other

data management issues

DFS****s.java DR violations (151) Credentials and IP addresses should not be hard coded

Deprecated code should be removed

F******t.java DR violations (106) Redundant exceptions propagate errors and create

vulnerabilities

DFS****.java

- Dis*****.java
Top 2% of files in DR

violations

High % of commit coupling

Redundant exceptions propagate errors and create

vulnerabilities and resource management issues

Connected files propagate issues

FS*****.java

- F****m.java

- F****ry.java

- B****.java

- F*****p.java

Top 2% of files in DR violations

High % of commit coupling

Redundant exceptions propagate errors and create

vulnerabilities and resource management issues

Connected files propagate issues

21
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Your Technical Debt Toolbox

How does SEI accelerate

progress?

• Develop policy guidance

• Develop organizational

practices

• Extend and develop tools

• Support data analysis

• Build a community of

research and practitioners

What can you and your

teams do today?

• Become aware of debt

• Assess the debt

• Build a technical debt

registry

• Decide what to fix

• Take action

22
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Looking Ahead:

Increasing Automation to Assist

Evolving Systems

23
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

FY 19–21: Evolving DoD Software Affordably

Problem: Refactoring is a slow, labor-intensive activity

• Harvest components for use in a next-generation system

• Replace a proprietary component

• Reduce coupling with hardware platform

Solution: Create an automated-component refactoring assistant

that recommends architectural refactorings and implements them

through code transformations

24
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

FY 19–21: Evolving DoD Software Affordably

[2] Refactoring

assistant

CMU SEI Approach

1. Formalize the

evolutionary goal,

and use it to drive

recommendations

2. Digest and derive

existing architecture

3. Adapt search-based

algorithms to

generate suitable

code

recommendations

[1] Goals

Legacy code
[3] Refactored code

25
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

FY 19: Using Machine Learning for Software Development

Problem: Inability to detect and enforce use of design patterns

limits DoD’s capability to develop affordable and trustworthy

software

Solution: Create a proof-of-concept tool using code analysis and

deep learning to automatically detect most commonly seen design

patterns, in particular model–view–controller

26
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

FY 19: Using Machine Learning for Software Development

[2] Pattern

detection

CMU SEI Approach

1. Bridge abstraction

gap between code

and design patterns

2. Represent code for

machine learning

3. Publish data, and

iterate

Long-term vision:

integrate into

continuous-integration

tool chains

[1] Design features

on code

[3] Design enforcement

during development

27
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Impact: Advancing the State of Practice

Tooling:

• osate.org

• sei.cmu.edu/go/technicaldebt

Transition partners:

• U.S. Army Joint Multi-Role Tech Demo

• U.S. Air Force Life Cycle Management Center

• U.S. Food and Drug Administration

Community:

• savi.avsi.aero

• techdebtconf.org

Managing

Technical Debt,

Addison-Wesley,

2019

Philippe Kruchten

Robert Nord

Ipek Ozkaya

