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Problem

Validation of behavior of new technologies is essential for its adoption

• Non-deterministic algorithms: e.g., Machine Learning (ML)

• Unpredictable environments: e.g., navigating unknown area

Assured Autonomy

• Enable ML to 

- Detect complex patterns (object recognition)

- Determine actions to take in uncertain situations

• Interact with unknown environment

Cyber-Physical Systems

• React to physical environment

• Safe behavior: safe actions at correct time (e.g., prevent crash)
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SEI Focus

Effective assurance techniques for 

emerging technologies

• Machine Learning

• Autonomous systems

Engineering to enhance 

usability of AI

• To reduce uncertainty

• To simplify assurance
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Aims for this Line of Work

Affordable

Be Affordable such that the cost of acquisition 

and operations, despite increased capability, 

is reduced and predictable 

Trustworthy

Be Trustworthy in construction, correct in 

implementation, and resilient in the face of 

operational uncertainties 

Capable

Bring Capabilities that make new missions 

possible or improve the likelihood of success 

of existing ones 

Timely

Be Timely so that the cadence of fielding 

is responsive to and anticipatory of the 

operational tempo of the warfighter 
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Line-funded Strategic Initiative Projects

What will the robot do next? (Human-Machine Teaming) 

PI: Drew Gifford

• Understanding autonomous behavior key for 

- Simplification of behavior validation

- Human-robot teaming

Certifiable Distributed Runtime Assurance

PI: Dionisio de Niz

• Use enforcers to ensure safe behavior

• Verification limited to enforcers resulting in verified system-wide safety

Previous Projects

• Verifying Distributed Adaptive Real-Time Systems (DART)

- Languages: DMPL, Schedulers: ZSRM, Tools: DEMETER

• Why did the robot do that?
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What will the robot do next? 

(Human-Machine Teaming)

PI: Dr. Drew Gifford
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What will the robot do next?
Human-Machine Teaming

Understanding robot behavior is important:

Robots are increasingly being utilized 

in important tasks such as search and 

rescue operations. 

Understanding robot behavior is difficult:

Their behaviors are often hard to 

understand, leading to users’ mistrust 

and often abandonment of very useful 

tools.

People form beliefs about robot behavior 

through observation, but robots do not 

execute actions with the intent of 

conveying state preferences.
http://archive.defense.gov/DODCMSShare/NewsStoryPhoto/2013-12/hrs_tartan%20rescue.jpg
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How can we increase neglect tolerance – the length of 

time that users are willing to look away from their robots 

before they proactively monitor them again?

Neglect tolerance is widely used as a measure of trust in 

robots.

We seek to measure and use operator gaze to adapt 

robot actions.

How might a robot behave (or “misbehave”) to confirm 

operator expectations of robotic motion?

Modifying Robot Behavior Based on User Attention
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Generating Trajectories to Convey System Intent

“Evaluating Critical Points 

in Trajectories” paper 

published and presented at 

26th IEEE International 

Symposium on Robot and 

Human Interactive 

Communication (RO-MAN 

2017)

How can the robot generate

paths that indicate 

preference?

Can users infer preference 

based on these non-verbal 

explanations?
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Certifiable Distributed Runtime 

Assurance (CDRA)

PI: Dr. Dionisio de Niz
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Assurance Automation for Safe-Critical Cyber-Physical Systems

• Through formal verification

Challenge:

• Traditional Verification Does Not Scale

• Unpredictable Algorithms like machine learning (Autonomous CPS)

• Timely Interaction with Environment: correct actions at correct time

Our Solution:

• Add simpler (verifiable) runtime enforcer to make algorithms predictable

• Formally: specify, verify, and compose multiple enforcers:

- Logic: Enforcer intercepts/replaces unsafe action 

- Timing: at right time

• Protect enforcers against failures/attacks

Certifiable Distributed Runtime Assurance

Controller
Logical

Enforcer

at(x,y)

moveTo(x,y)
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Related Work

Simplex Architecture (SEI)

• Lui Sha, Bruce Krogh, et al.

- Normal untrusted controller guarded by simple safety controller

• Control-theoretic reachability verification (Bak, et al.)

• Unverified code

Control Theoretic / Hybrid Verification

• Claire Tomlin

• Unverified ML guarded by safety controller 

- Verified control-theoretic model via reachability

- Unverified code, timing

Runtime Assurance

• Safety-Progress (Falcone): Logical Verification Only

• Edit Automata (Ligatti): Logical Verification Only

• CoPilot (Pike): sampling internal estate, logical verification, temporal sampling
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Logical Model

Statespace

• 𝑆 = {𝑠}

• 𝜙 ⊆ 𝑆

Periodic actions

• Transition: 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆

• Destination state: 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈ 𝑅(𝛼)}

Identify states too close to safety border

• Inertia lead to unsafe state even if enforced

• Enforceable states: 

𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗
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Logical Enforcer

Statespace & actions

• 𝑆 = 𝑠 , 𝜙 ⊆ 𝑆

• 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆; 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈ 𝑅(𝛼)}

Enforceable states

• 𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Logical Enforcer: 𝐸 = (𝑃, 𝐶𝜙, 𝜇)

• Set of safe actions:

𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

• Monitor and enforce safe action:

 𝛼 =  
𝛼, 𝛼 ∈ 𝜇(𝑠)

𝑝𝑖𝑐𝑘(𝜇 𝑠 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗
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Drone Example
Statespace

• 𝑆 = {𝑠|𝑠 = 𝑥, 𝑦, 𝜃 }

• 𝜙 = 𝑥, 𝑦, 𝜃 𝑥, 𝑦 ∈ 𝑍}

Enforceable states

• 𝛿𝑃: Max distance in one period 𝑃

• 𝛿𝐵: Max distance in opposite direction 

of enforcement

• 𝐶𝜙 = {(𝑥, 𝑦, 𝜃)| 𝑥 + 𝛿𝐵, 𝑦 + 𝛿𝐵 ∈ 𝑍 ∧ 𝑥 − 𝛿𝐵, 𝑦 − 𝛿𝐵 ∈ 𝑍}

Action: constant speed at angle 𝜃

Enforcement:  𝜃 =

 𝜃 ∈  𝜃1, 𝑖𝑓 𝑌𝑚𝑎𝑥 − 𝑦 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈  𝜃2, 𝑖𝑓 𝑥 − 𝑋𝑚𝑖𝑛 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈  𝜃3, 𝑖𝑓 𝑦 − 𝑌𝑚𝑖𝑛 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈  𝜃4, 𝑖𝑓 𝑋𝑚𝑎𝑥 − 𝑥 ≤ 𝛿𝐵𝜃 + 𝛿𝑃

𝜃, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑍
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Composing Enforcers

Enforcer Details: E: 𝑃, 𝐶𝜙, 𝜇, 𝑈

• ∀𝑠 ∈ 𝐶𝜙: 𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠

• 𝑈: utility

Composition without conflict

• 𝐸1: 𝑃1, 𝐶𝜙1
, 𝜇1, 𝑈1

• 𝐸2: 𝑃2, 𝐶𝜙2
, 𝜇2, 𝑈2

• 𝜇1,2: 𝜇1 ∩ 𝜇2

Conflicting: Priority:

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ?𝜇1 ∩ 𝜇2 ∶ 𝜇1

Conflicting: Utility

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1∩𝜇2
∑𝑈𝑖 𝑠, 𝛼′ ∶ 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1

∑𝑈𝑖 𝑠, 𝛼′
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Are We Done Yet?
Timing Assumption:

• Unverified software + enforcer finish before end of every 𝑃 period.

- Unverified software executes for less than its Worst-Case Execution Time (WCET)

- Other software running executes for less than its WCET

- Schedulability analysis successful

What can go wrong?

• Unbounded preemption

- High priority software executes longer than WCET

- Can make other software miss deadlines: late actions with old sensing

• Unbounded execution

- Software executes longer than WCET

- Misses its own deadline: Does NOT produce output on time: late action + old sensing 

• Inertia takes it to unsafe state
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Fixed-Priority Scheduling + Rate Monotonic

High Priority

Med. Priority

Low Priority

𝛼 𝛼 𝛼

𝛼

𝛼

𝑠 𝑠 𝑠

𝑠

𝑠

Preempted by higher 
priority task

Does not run until higher 
priority tasks finish

Preempted by higher 
priority task

S
c

h
e

d
u

le
r
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Overload -> old sensed data + late actuation

S
c

h
e

d
u

le
r

High Priority

Med. Priority

Low Priority

𝛼 𝛼

𝛼

𝛼

𝑠 𝑠

𝑠

𝑠

Old sensing, late 
actuation

Old sensing, late 
actuation

late actuation

Missed deadlinesMissed deadlinesMissed deadlines

overload
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Unbounded preemption
Solution: Enforce timing budgets (timing enforcement)

S
c

h
e

d
u

le
r

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget
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Unbounded preemption
Solution: Enforce timing budgets (timing enforcement)

S
c

h
e

d
u

le
r

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 STILL: Old sensing, late 
actuation if overload

Prevented from 
delaying other tasks if 

overload

𝛼

𝛼

Other tasks’ actuation 
on time

Other tasks’ actuation 
on time

𝛼𝑠

𝑠
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Unbounded Execution:
Solution:  safe actuation on timing enforcement

S
c

h
e

d
u

le
r

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

Only executed in given 
periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 Decide if calculated 𝛼
used too old 𝑠 or not

Prevented from 
delaying other tasks if 

overload

𝛼∗

𝛼
𝛼

𝛼

Calculate a default safe fast 
actuation executed “just 
before” timing budget 

expires: kernel informs task

𝑠

𝑠
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Are we done yet?

Unverified software may corrupt Logical Enforcer

• It can even be malicious

Unverified software uses

• Unverified OS/kernel

• Unverified libraries

Temporal Enforcer relies on

• Unverified kernel / scheduler
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Mixed-Trust Computing

System composed of trusted (verified) and untrusted (unverified) components

• Trusted : Verified Enforcers

• Untrusted: Unverified software

Untrusted should not corrupt trusted

Trusted should not depend on untrusted

• Cannot depend on unverified kernel / scheduler

Trusted components

• Preserve safety

Untrusted components

• Provide mission capability / performance

• Potential spurious failures
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Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Application1 Application2 Application3

XMHF

HypApp1 HypApp2 HypApp3

VM

Verified 
Protection of 

HypApps
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Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Untrusted1 Untrusted2 Untrusted3

XMHF

Enforcer1 Enforcer2 Enforcer3

VM

Verified 
Protection of 

HypApps

Only temporal enforcer can be protected if untrusted does not finish
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Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Untrusted1 Untrusted2 Untrusted3

XMHF

TE1 TE2 TE3

VM

Verified 
Protection of 

HypApps

L
E

L
E

L
E
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Two schedulers: VM scheduler + XHMF Scheduler

𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼𝑠

VM

XMHF

𝜏1

𝜏2

𝜅1

𝜅2

Mixed-trust task: 𝜇𝑖 = (𝜏𝑖 , 𝜅𝑖)
g

u
e

s
t 
ta

s
k
s

H
y
p

e
r 

ta
s
k
s
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Two schedulers: VM scheduler + XHMF Scheduler

𝑠 𝛼 𝛼𝑠 𝑠 𝛼

𝛼
𝛼𝑠

𝛼∗

VM

XMHF
System safe even if VM dies

𝛼∗ 𝛼∗ 𝛼∗

𝜏1

𝜏2

𝜅1

𝜅2

g
u

e
s
t 
ta

s
k
s

H
y
p

e
r 

ta
s
k
s

Mixed-trust task: 𝜇𝑖 = (𝜏𝑖 , 𝜅𝑖)
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Mixed-Trust Scheduler

VM Scheduler

• Fixed Priority

• Preemptive

- To maximize utilization

Hypervisor Scheduler

• Fixed priority

• Non-Preemptive

- To simplify verification

New Timing Verification Equations
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Mixed-Trust Computing Remarks

Verification applied only to small part of system: enforcers

• Unverified parts guarded by enforcers

• Increases speed of validation, decreases its cost

• Verified System-Wide Safe Behavior

Verified hypervisor protection allows any unverified part

• COTS, open source community

• Even malicious code is prevented from corrupting safe behavior

Enables Safe Use of 

• COTS

• Open source code

Reduces Verification / Validation Time – Fielding Time

Reduces Verification Cost
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Outcomes

Real-time schedulers

• Mixed-Trust Scheduler

• Uber XMHF hypervisor

Verification algorithms

• Mixed Trust Timing Verification

• UberSpark hyperapps verification framework

Experimental Platforms

• Drone Laboratory

• Demos: virtual fence, minimum separation

Publications

• Dionisio de Niz, Bjorn Andersson, and Gabriel Moreno,” 

Safety Enforcement for the Verification of Autonomous 

Systems,” SPIE Conference on Autonomous Systems. 

2018

• Amit Vasudevan, Sagar Chaki, “Have Your PI and Eat it 

Too: Practical Security on a Low-Cost Ubiquitous 

Computing Platform,” EuroS&P 2018

• Bjorn Andersson, Sagar Chaki, and Dionisio de Niz, 

“Combining Symbolic Runtime Enforcers for Cyber-

Physical Systems,” International Conference in Runtime 

Verification. 2017

• Sagar Chaki and Dioniso de Niz, “Certifiable Runtime 

Assurance of Distributed Real-Time Systems,” AIAA 

Information Systems-AIAA Infotech @ Aerospace. 2017.

Engagements

• AFRL PWP,  ONR PWP
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Are we done yet?

Oversimplification of physical interaction with environment

• Simple to stop a quadrotor

• Contrast: jet-fighter cannot be stopped mid-air or easily deviated from a trajectory

Simplified enforcer composition

• Tradeoffs in relaxing assumptions/guarantees

Tradeoffs between mission performance / safety

• How do I avoid a safe drone that does not move


