
1
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Assuring Non-Deterministic
Software-Based Systems

Dionisio de Niz

2
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of

the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless

designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE

MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and

distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required

for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-1193

3
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Problem

Validation of behavior of new technologies is essential for its adoption

• Non-deterministic algorithms: e.g., Machine Learning (ML)

• Unpredictable environments: e.g., navigating unknown area

Assured Autonomy

• Enable ML to

- Detect complex patterns (object recognition)

- Determine actions to take in uncertain situations

• Interact with unknown environment

Cyber-Physical Systems

• React to physical environment

• Safe behavior: safe actions at correct time (e.g., prevent crash)

4
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

SEI Focus

Effective assurance techniques for

emerging technologies

• Machine Learning

• Autonomous systems

Engineering to enhance

usability of AI

• To reduce uncertainty

• To simplify assurance

5
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Aims for this Line of Work

Affordable

Be Affordable such that the cost of acquisition

and operations, despite increased capability,

is reduced and predictable

Trustworthy

Be Trustworthy in construction, correct in

implementation, and resilient in the face of

operational uncertainties

Capable

Bring Capabilities that make new missions

possible or improve the likelihood of success

of existing ones

Timely

Be Timely so that the cadence of fielding

is responsive to and anticipatory of the

operational tempo of the warfighter

6
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Line-funded Strategic Initiative Projects

What will the robot do next? (Human-Machine Teaming)

PI: Drew Gifford

• Understanding autonomous behavior key for

- Simplification of behavior validation

- Human-robot teaming

Certifiable Distributed Runtime Assurance

PI: Dionisio de Niz

• Use enforcers to ensure safe behavior

• Verification limited to enforcers resulting in verified system-wide safety

Previous Projects

• Verifying Distributed Adaptive Real-Time Systems (DART)

- Languages: DMPL, Schedulers: ZSRM, Tools: DEMETER

• Why did the robot do that?

7
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

What will the robot do next?

(Human-Machine Teaming)

PI: Dr. Drew Gifford

8
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

What will the robot do next?
Human-Machine Teaming

Understanding robot behavior is important:

Robots are increasingly being utilized

in important tasks such as search and

rescue operations.

Understanding robot behavior is difficult:

Their behaviors are often hard to

understand, leading to users’ mistrust

and often abandonment of very useful

tools.

People form beliefs about robot behavior

through observation, but robots do not

execute actions with the intent of

conveying state preferences.
http://archive.defense.gov/DODCMSShare/NewsStoryPhoto/2013-12/hrs_tartan%20rescue.jpg

9
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

How can we increase neglect tolerance – the length of

time that users are willing to look away from their robots

before they proactively monitor them again?

Neglect tolerance is widely used as a measure of trust in

robots.

We seek to measure and use operator gaze to adapt

robot actions.

How might a robot behave (or “misbehave”) to confirm

operator expectations of robotic motion?

Modifying Robot Behavior Based on User Attention

10
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Generating Trajectories to Convey System Intent

“Evaluating Critical Points

in Trajectories” paper

published and presented at

26th IEEE International

Symposium on Robot and

Human Interactive

Communication (RO-MAN

2017)

How can the robot generate

paths that indicate

preference?

Can users infer preference

based on these non-verbal

explanations?

11
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Research Review 2018

Certifiable Distributed Runtime

Assurance (CDRA)

PI: Dr. Dionisio de Niz

12
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Assurance Automation for Safe-Critical Cyber-Physical Systems

• Through formal verification

Challenge:

• Traditional Verification Does Not Scale

• Unpredictable Algorithms like machine learning (Autonomous CPS)

• Timely Interaction with Environment: correct actions at correct time

Our Solution:

• Add simpler (verifiable) runtime enforcer to make algorithms predictable

• Formally: specify, verify, and compose multiple enforcers:

- Logic: Enforcer intercepts/replaces unsafe action

- Timing: at right time

• Protect enforcers against failures/attacks

Certifiable Distributed Runtime Assurance

Controller
Logical

Enforcer

at(x,y)

moveTo(x,y)

13
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Related Work

Simplex Architecture (SEI)

• Lui Sha, Bruce Krogh, et al.

- Normal untrusted controller guarded by simple safety controller

• Control-theoretic reachability verification (Bak, et al.)

• Unverified code

Control Theoretic / Hybrid Verification

• Claire Tomlin

• Unverified ML guarded by safety controller

- Verified control-theoretic model via reachability

- Unverified code, timing

Runtime Assurance

• Safety-Progress (Falcone): Logical Verification Only

• Edit Automata (Ligatti): Logical Verification Only

• CoPilot (Pike): sampling internal estate, logical verification, temporal sampling

14
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Logical Model

Statespace

• 𝑆 = {𝑠}

• 𝜙 ⊆ 𝑆

Periodic actions

• Transition: 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆

• Destination state: 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈ 𝑅(𝛼)}

Identify states too close to safety border

• Inertia lead to unsafe state even if enforced

• Enforceable states:

𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗

15
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Logical Enforcer

Statespace & actions

• 𝑆 = 𝑠 , 𝜙 ⊆ 𝑆

• 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆; 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈ 𝑅(𝛼)}

Enforceable states

• 𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Logical Enforcer: 𝐸 = (𝑃, 𝐶𝜙, 𝜇)

• Set of safe actions:

𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

• Monitor and enforce safe action:

 𝛼 =
𝛼, 𝛼 ∈ 𝜇(𝑠)

𝑝𝑖𝑐𝑘(𝜇 𝑠), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗

16
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Drone Example
Statespace

• 𝑆 = {𝑠|𝑠 = 𝑥, 𝑦, 𝜃 }

• 𝜙 = 𝑥, 𝑦, 𝜃 𝑥, 𝑦 ∈ 𝑍}

Enforceable states

• 𝛿𝑃: Max distance in one period 𝑃

• 𝛿𝐵: Max distance in opposite direction

of enforcement

• 𝐶𝜙 = {(𝑥, 𝑦, 𝜃)| 𝑥 + 𝛿𝐵, 𝑦 + 𝛿𝐵 ∈ 𝑍 ∧ 𝑥 − 𝛿𝐵, 𝑦 − 𝛿𝐵 ∈ 𝑍}

Action: constant speed at angle 𝜃

Enforcement: 𝜃 =

 𝜃 ∈ 𝜃1, 𝑖𝑓 𝑌𝑚𝑎𝑥 − 𝑦 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈ 𝜃2, 𝑖𝑓 𝑥 − 𝑋𝑚𝑖𝑛 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈ 𝜃3, 𝑖𝑓 𝑦 − 𝑌𝑚𝑖𝑛 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈ 𝜃4, 𝑖𝑓 𝑋𝑚𝑎𝑥 − 𝑥 ≤ 𝛿𝐵𝜃 + 𝛿𝑃

𝜃, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑍

17
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Composing Enforcers

Enforcer Details: E: 𝑃, 𝐶𝜙, 𝜇, 𝑈

• ∀𝑠 ∈ 𝐶𝜙: 𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠

• 𝑈: utility

Composition without conflict

• 𝐸1: 𝑃1, 𝐶𝜙1
, 𝜇1, 𝑈1

• 𝐸2: 𝑃2, 𝐶𝜙2
, 𝜇2, 𝑈2

• 𝜇1,2: 𝜇1 ∩ 𝜇2

Conflicting: Priority:

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ?𝜇1 ∩ 𝜇2 ∶ 𝜇1

Conflicting: Utility

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1∩𝜇2
∑𝑈𝑖 𝑠, 𝛼′ ∶ 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1

∑𝑈𝑖 𝑠, 𝛼′

18
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Are We Done Yet?
Timing Assumption:

• Unverified software + enforcer finish before end of every 𝑃 period.

- Unverified software executes for less than its Worst-Case Execution Time (WCET)

- Other software running executes for less than its WCET

- Schedulability analysis successful

What can go wrong?

• Unbounded preemption

- High priority software executes longer than WCET

- Can make other software miss deadlines: late actions with old sensing

• Unbounded execution

- Software executes longer than WCET

- Misses its own deadline: Does NOT produce output on time: late action + old sensing

• Inertia takes it to unsafe state

19
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Fixed-Priority Scheduling + Rate Monotonic

High Priority

Med. Priority

Low Priority

𝛼 𝛼 𝛼

𝛼

𝛼

𝑠 𝑠 𝑠

𝑠

𝑠

Preempted by higher
priority task

Does not run until higher
priority tasks finish

Preempted by higher
priority task

S
c

h
e

d
u

le
r

20
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Overload -> old sensed data + late actuation

S
c

h
e

d
u

le
r

High Priority

Med. Priority

Low Priority

𝛼 𝛼

𝛼

𝛼

𝑠 𝑠

𝑠

𝑠

Old sensing, late
actuation

Old sensing, late
actuation

late actuation

Missed deadlinesMissed deadlinesMissed deadlines

overload

21
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Unbounded preemption
Solution: Enforce timing budgets (timing enforcement)

S
c

h
e

d
u

le
r

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

22
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Unbounded preemption
Solution: Enforce timing budgets (timing enforcement)

S
c

h
e

d
u

le
r

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 STILL: Old sensing, late
actuation if overload

Prevented from
delaying other tasks if

overload

𝛼

𝛼

Other tasks’ actuation
on time

Other tasks’ actuation
on time

𝛼𝑠

𝑠

23
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Unbounded Execution:
Solution: safe actuation on timing enforcement

S
c

h
e

d
u

le
r

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 Decide if calculated 𝛼
used too old 𝑠 or not

Prevented from
delaying other tasks if

overload

𝛼∗

𝛼
𝛼

𝛼

Calculate a default safe fast
actuation executed “just
before” timing budget

expires: kernel informs task

𝑠

𝑠

24
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Are we done yet?

Unverified software may corrupt Logical Enforcer

• It can even be malicious

Unverified software uses

• Unverified OS/kernel

• Unverified libraries

Temporal Enforcer relies on

• Unverified kernel / scheduler

25
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Mixed-Trust Computing

System composed of trusted (verified) and untrusted (unverified) components

• Trusted : Verified Enforcers

• Untrusted: Unverified software

Untrusted should not corrupt trusted

Trusted should not depend on untrusted

• Cannot depend on unverified kernel / scheduler

Trusted components

• Preserve safety

Untrusted components

• Provide mission capability / performance

• Potential spurious failures

26
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Application1 Application2 Application3

XMHF

HypApp1 HypApp2 HypApp3

VM

Verified
Protection of

HypApps

27
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Untrusted1 Untrusted2 Untrusted3

XMHF

Enforcer1 Enforcer2 Enforcer3

VM

Verified
Protection of

HypApps

Only temporal enforcer can be protected if untrusted does not finish

28
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Untrusted1 Untrusted2 Untrusted3

XMHF

TE1 TE2 TE3

VM

Verified
Protection of

HypApps

L
E

L
E

L
E

29
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Two schedulers: VM scheduler + XHMF Scheduler

𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼𝑠

VM

XMHF

𝜏1

𝜏2

𝜅1

𝜅2

Mixed-trust task: 𝜇𝑖 = (𝜏𝑖 , 𝜅𝑖)
g

u
e

s
t
ta

s
k
s

H
y
p

e
r

ta
s
k
s

30
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Two schedulers: VM scheduler + XHMF Scheduler

𝑠 𝛼 𝛼𝑠 𝑠 𝛼

𝛼
𝛼𝑠

𝛼∗

VM

XMHF
System safe even if VM dies

𝛼∗ 𝛼∗ 𝛼∗

𝜏1

𝜏2

𝜅1

𝜅2

g
u

e
s
t
ta

s
k
s

H
y
p

e
r

ta
s
k
s

Mixed-trust task: 𝜇𝑖 = (𝜏𝑖 , 𝜅𝑖)

31
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Mixed-Trust Scheduler

VM Scheduler

• Fixed Priority

• Preemptive

- To maximize utilization

Hypervisor Scheduler

• Fixed priority

• Non-Preemptive

- To simplify verification

New Timing Verification Equations

32
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Mixed-Trust Computing Remarks

Verification applied only to small part of system: enforcers

• Unverified parts guarded by enforcers

• Increases speed of validation, decreases its cost

• Verified System-Wide Safe Behavior

Verified hypervisor protection allows any unverified part

• COTS, open source community

• Even malicious code is prevented from corrupting safe behavior

Enables Safe Use of

• COTS

• Open source code

Reduces Verification / Validation Time – Fielding Time

Reduces Verification Cost

33
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Outcomes

Real-time schedulers

• Mixed-Trust Scheduler

• Uber XMHF hypervisor

Verification algorithms

• Mixed Trust Timing Verification

• UberSpark hyperapps verification framework

Experimental Platforms

• Drone Laboratory

• Demos: virtual fence, minimum separation

Publications

• Dionisio de Niz, Bjorn Andersson, and Gabriel Moreno,”

Safety Enforcement for the Verification of Autonomous

Systems,” SPIE Conference on Autonomous Systems.

2018

• Amit Vasudevan, Sagar Chaki, “Have Your PI and Eat it

Too: Practical Security on a Low-Cost Ubiquitous

Computing Platform,” EuroS&P 2018

• Bjorn Andersson, Sagar Chaki, and Dionisio de Niz,

“Combining Symbolic Runtime Enforcers for Cyber-

Physical Systems,” International Conference in Runtime

Verification. 2017

• Sagar Chaki and Dioniso de Niz, “Certifiable Runtime

Assurance of Distributed Real-Time Systems,” AIAA

Information Systems-AIAA Infotech @ Aerospace. 2017.

Engagements

• AFRL PWP, ONR PWP

34
© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Research Review 2018

Are we done yet?

Oversimplification of physical interaction with environment

• Simple to stop a quadrotor

• Contrast: jet-fighter cannot be stopped mid-air or easily deviated from a trajectory

Simplified enforcer composition

• Tradeoffs in relaxing assumptions/guarantees

Tradeoffs between mission performance / safety

• How do I avoid a safe drone that does not move

