Cal‘negie Mell()n [Jniversitv [DISTRIBUTION STATEMENT Please copy and paste the appropriate distribution statement into
J this
Software Engineering Institute

How Can | Enforce the SEI
CERT C Coding
Standard Using Static Analysis

Webinar

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM17-0546

Why secure coding Is a problem

¥ < Whatis CERT

» Why use it
e howto useit

C as a language is back!

Embedded challenges for safety
& security

o Secure-by-Design
e Tips, Tricks, and Traps

Carnegic MellonUniversity = = How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT is material has been approved for public
- . . < © 2018 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

Internet of (Insecure) Things

Carncgic Mcllon Univcrsity How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
X X X © 2018 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

Security can be tricky
Security Control

Carneg'io Mellon Lh]iv(‘rsitv How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
S f = Engi B < © 2018 Carnegie Mellon University release and unlimited distribution.
oftware Engineering Institute

Example: Cars are being hacked...

because they talk too much

Number of reported incidents

= UHF
o 7o
? RFIDJ

80,000
70,000 67,168
61,214 Distances for Hacking Car Features
60,000 : 5
Passive anti-theft system
— 48,562 10 meters Radio data system In-car Wif
’ o 42,854 100 meters Varies
g Bluetooth
40,000 10 meters
29,999
30,000
20,000 18,843
11,911
10,000 5503
0
2006 2007 2008 2009 2010 2011 2012 2013 2014 Tire Pressure l———————=& Smart key
Fiscal year monitoring system 5-20 meters
1 meter
Source: GAO analysis of United States Computer Emergency Readiness Team data for fiscal years 2006-2014. | GAO-15-573T
ILLUSTRATION: CHNMNMOMNE
Carnegie Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
v © 2018 Carnegie Mellon University release and unlimited distribution. 7

Software Engineering Institute

Engineering and Development

Sustainment

Engineering and Development

Mission Threat : Abuse EArchitecture Coding Testing, Monitoring Breach :
Thread Analysis ¢ Cases : and Design Rules and ¢ Validation Awareness
: : : Principles Guidelines : and :
: : ¢ Verification : :
H -h------------------l-------------------------------------.:--------------------‘ E
Requirements and Acquisition : Deployment and Operations :

Carncgic Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
X X X © 2018 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

Most Vulnerabilities are Caused by Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability Database due to programming
errors
* 51% of those were due to classic errors like buffer overflows, cross-site scripting,
injection flaws

Top vulnerabilities include
* Integer overflow
* Buffer overflow
» Missing authentication
» Missing or incorrect authorization
» Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software Security?

cwe.mitre.org/top25 Jan 6, 2015

How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public 10
re

Carnegie Mellon University
’ v © 2018 Carnegie Mellon University lease and unlimited distribution.

Software Engineering Institute

The CERT C Coding Standard

Developed with community involvement since Spring 2008
» 1,568 registered experts on the wiki as of February 2014

Version 1.0 (C99) published by Addison-Wesley in
September 2008

Version 2.0 was published in April 2014; extended for

. Cl1 SEI CERT
. ISO/IEC TS 17961 Compatibility C Coding Standard

Rules for Developing Safe, Reliable, and Secure Systems.

Free PDF download published in 2016: e

http://cert.org/secure-coding/products-services/secure-coding-
download.cfm

“Current” guidelines available on CERT Secure Coding wiki
* https://www.securecoding.cert.org

Ca[‘n(‘,gi(‘, M(‘,ll()n Uni\'(\rsi[v How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
. i < © 2018 Carnegie Mellon University release and unlimited distribution. 12
Software Engineering Institute

http://cert.org/secure-coding/products-services/secure-coding-download.cfm
https://www.securecoding.cert.org/

CERT Rule Components 1

Pages /... / Rec. 01. Declarations and Initialization (DCL) # Edit < Waitch 2 Share ees

DCL22-CPP. Functions declared with [[noreturn]] must return void

Created by Aaron Ballman, last modified on Aug 24, 2016

As described in MSC55-CPP. Do not return from a function declared ns declared with the [[noreturn]]
attribute must not return on any code path. If a function declared with the 11 attribute has a non-void return value, it
implies that the function returns a value to the caller even though it would result in undefined behavior. Therefore, functions declared
with [[noreturn]] must also be declared as returning void.

Noncompliant Code Example

In this noncompliant code example, the function declared o return an int:

Introduction &

#include <cstdlib> Normative

[[noreturn]] int () {
std::exit(0);
return @;

}

This example does not violate MSC55-CPP. Do not return from a function declared [[noreturn]] because std: :exit() is
declared [[noreturn]], sothe return 0; statement can never be executed.

Ca[‘negi(’-, Mollon Univ(‘[‘sity How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public

X X X © 2018 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

CERT Rule Components 2

Noncompliant Code Example

In this noncompliant code example, the function declared with [[noreturn]] claims to return an int:

#include <cstdlib=

[[noreturn]] int f() {
std::exit(0);
return 9;

}

This example does not viclate MSC55-CPP. Do not return from a function declared [[noreturn]]
because std: :exit() is declared [[noreturn]], so the return @; statement can never be
executed.

Compliant Solution

Because the function is declared [[noreturn]], and no code paths in the function allow for a return
in order to comply with MSC55-CPP. Do not return from a function declared [[noreturn]], the compliant
solution declares the function as returning void and elides the explicit return statement:

#include <cstdlib=>

[[noreturn]] veoid f() {
std::exit(0);
}

Noncompliant Code

Don’t try this at home!

Compliant Code

Fixes noncompliant code.

Carnegie Mellon University
Software Engineering Institute

© 2018 Carnegie Mellon University

How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution.

15

CERT Rule Components 3

Automated Detection

Tool Version Checker Description

Clang 3.9 -Winvalid-noreturn

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Bibliography

[ISO/IEC 14882-2014] Subclause 7.6.3, "Noreturn Attribute”

SEI CERT C++ Coding Standard = MSC54-CPP. Value-returning functions must return a value from all exit paths
MSC55-CPP. Do not return from a function declared [[noreturn]]

Carn(‘,gi(’-, Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis
. . < © 2018 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

16

CERT Rule Components 4

Risk Assessment

A function declared with a non-void return type and declared with the [[noreturn]] attribute is
confusing to consumers of the function because the two declarations are conflicting. In turn, it can
result in misuse of the API by the consumer or can indicate an implementation bug by the producer.

Rule Severity Likelihood Remediation Cost Priority Level

DCL22-CPP Low Unlikely Low P3 L3

Automated Detection

Tool Version Checker Description
Clang 3.9 -Winvalid-noreturn
Carnegio Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
7 © 2018 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

Risk Assessment

Risk assessment is performed using failure mode, effects, and criticality analysis.

Severity—How serious are the consequences of
the rule being ignored?

Likelihood—How likely is it that a flaw introduced

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium | data integrity violation, uninten-
tional information disclosure

3 high run arbitrary code

Value Meaning

. . . 1 unlikel

by ignoring the rule can lead to an exploitable vul- y

nerability? 2 probable
3 likely
Value Meaning Detection Correction

L . 1 high manual manual

Cost—The cost of mitigating the vulnerability. 9 . -
2 medium | automatic | manual
3 low automatic | automatic

(j;"-“(\gi(n Mellon [fni“\rsi[.\ How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public

2018 Carnegie Mellon University

Software Engineering Institute

release and unlimited distribution.

18

		Severity – h—How serious are the consequences of the rule being ignored?

				Value

		Meaning

		Examples of Vulnerability

		1

		low

		denial-of-service attack, abnormal termination

		2

		medium

		data integrity violation, unintentional information disclosure

		3

		high

		run arbitrary code

		Likelihood – h—How likely is it that a flaw introduced by ignoring the rule can lead to an exploitable vulnerability?

				Value

		Meaning

		1

		unlikely

		2

		probable

		3

		likely

		Cost – t—The cost of mitigating the vulnerability.

				Value

		Meaning

		Detection

		Correction

		1

		high

		manual

		manual

		2

		medium

		automatic

		manual

		3

		low

		automatic

		automatic

Levels and Priorities

Medium severity,
probable, medium
cost to repair flaws

L2: P6 - P9

Carnegie Mellon University
Software Engineering Institute

How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

19

Degrees of Severity

CIA Triad:
« Confidentiality £ A

. %
e Integrity & -3
» Availability & =
O

Availability

CERT Severity Levels:

Value Meaning Examples of Vulnerability

seve rity_H oW se riou S 1 low denial-of-service attack, abnomal

termination

are the Consequences Of 2 medium | unintentional information disclo-
the rule being ignored? =

3 high run arbifrary code,
privilege escalation

Carn(‘,gi(‘]\’[(\“()n l,‘niv(\rsi[\' How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
v © 2018 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

		Severity – h—How serious are the consequences of the rule being ignored?

				Value

		Meaning

		Examples of Vulnerability

		1

		low

		denial-of-service attack, abnormal termination

		2

		medium

		data integrity violation, unintentional information disclosure

		3

		high

		run arbitrary code,
 privilege escalation

		Likelihood – how likely is it that a flaw introduced by ignoring the rule can lead to an exploitable vulnerability?

				Value

		Meaning

		1

		unlikely

		2

		probable

		3

		likely

		Cost – the cost of mitigating the vulnerability.

				Value

		Meaning

		Detection

		Correction

		1

		high

		manual

		manual

		2

		medium

		automatic

		manual

		3

		low

		automatic

		automatic

2011 CWE/SANS Top 25 Most Dangerous Software

Errors

Rank [Score ID Name

1] 93.8 CWE-89 Irr?pro.pef Neutralization of Special Elements used in an SQL Command ('SQL
— Injection’)

2] 833 CWE-78 Improper Negtra.llza'tlon of Special Elements used in an OS Command ('OS
— Command Injection')

[3] 79.0 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

(4] 777 CWE-79 Impro.pell' Neutralization of Input During Web Page Generation ('Cross-site
. Scripting')

[5] 76.9 CWE-306 Missing Authentication for Critical Function

[6] 76.8 CWE-862 Missing Authorization

[7] 75.0 CWE-798 Use of Hard-coded Credentials

[8] 75.0 CWE-311 Missing Encryption of Sensitive Data

[9] 74.0 CWE-434 Unrestricted Upload of File with Dangerous Type

[10] |73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision

http://cwe.mitre.org/top25/#Listing WE

Carnegie Mellon University
Software Engineering Institute

How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
© 2018 Carnegie Mellon University release and unlimited distribution.

http://cwe.mitre.org/top25/#CWE-89
http://cwe.mitre.org/top25/#CWE-78
http://cwe.mitre.org/top25/#CWE-120
http://cwe.mitre.org/top25/#CWE-79
http://cwe.mitre.org/top25/#CWE-306
http://cwe.mitre.org/top25/#CWE-862
http://cwe.mitre.org/top25/#CWE-798
http://cwe.mitre.org/top25/#CWE-311
http://cwe.mitre.org/top25/#CWE-434
http://cwe.mitre.org/top25/#CWE-807
http://cwe.mitre.org/top25/#Listing

C is the primary language of embedded

Fastest growing language 2017 (Tiobe)
Top in employer demand and growth (IEEE Spectrum)

Also C++
80% 2,0%
70%
60% ——
1,0% -
50% +—
o I B
30% — 0,0% - . l . -
4 g
2 P
10% +—— & Ny
-~ v
0% T T 1
C C++ other
Figure 11. Primary Programming Language in Embedded Systems Designs
Barr Group Embedded Survey 2018
Carnogio Mellon UIliV(‘[‘Sil'\’ fjC;\lf]vlg)ga\(‘igﬁ?’[ﬁjﬁ;bsmsvaﬁfRT C Coding Standard Using Static Analysis E:::::;lzl:"glg::iirﬁ:szl;ﬁ;ﬁ]ﬁg:‘s material has been approved for public

Software Engineering Institute

Barr Group Embedded Security Safety Report
2017 & 2018

Secure Coding Practices Adoption %

Coding Standards Code Review Static Analysis Standards no Static

70

60

50

40

30

20

1

o

o

2017 m2018 MW notenforced 18

Carnegio Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DIS RIBUTION STATEMENT A]Th s material has been approved for public
X X o ©2018Came gie Mellon Universit y lease and unlimited distribut
Software Engineering Institute

POLL: Secure Coding Standards

What coding standards do you use?

CERT
CWE
MISRA
OTHER
NONE

Carnegie Mellon University
Software Engineering Institute

How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

26

Barr Group Survey 2018:
Coding standards used for embedded safety-critical

...» Primary Basis Subset: 387
Written Standard? @ Safety standards
proprietary N Not security
MISRA I
Barr Group ==
Linux Kernel W
CERT Secure W
High Integrity C++ |}
JSF++ 1
other.. W ?

0% 20% 40% 60%

Figure 15. Primary Bases for Coding Standards Used in Safety-Critical Products

Ca[‘n(‘,gi(‘, M(‘,ll()n Uni\'(\rsi[v How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
. i < © 2018 Carnegie Mellon University release and unlimited distribution. 27
Software Engineering Institute

Fix or Prevent

Secure-by-design is a movement to create software that is secure rather
than trying to test security into software. By-design is a requirement of GDPR for
privacy and security.

“Although the notion of protecting software is an important one, it’s just plain
easier to protect something that is defect-free than something riddled with

vulnerabilities.”

(Gary McGraw, Cigital)

2

Secure by Design

Carnegie Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
’ v © 2018 Carnegie Mellon University release and unlimited distribution. 28

Software Engineering Institute

Policy first

« What teams need to do SA?
« What projects require SA?
 What rules are required?
 What amount of compliance?
* When can you suppress?
 How to handle legacy code?

* Do you ship with SA violations?
 Rules/recommendations?
e Levels?

Carn(‘,gi(‘]\’[(‘"()n l,‘nivorsi[\' How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
N . . © 2018 Carnegie Mellon University release and unlimited distribution. 30
Software Engineering Institute

Training

e Secure coding basics

e Hacking

* How to use & interpret standards
* IMPORTANCE of security

Carnegie Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
i < © 2018 Carnegie Mellon University release and unlimited distribution. 3 l
Software Engineering Institute

Workflow Demo

Support for IDE
Support for servers and CI/CD with enforced same configuration

- Directly‘access line of code to fix

B rashum 11 uriew
{4 ¥ [H mebtooites b {3 0 SerislostonTest b @ CestMLSeriskoationdPie, bodkan) : g .
g = < unaabegoraed
& © Ly Feodmage Tasis (Concertn]
) " & & (g Sephonber Tashs - Briany [Concerto]
private SEEURG testINLIeriniization(File testFile, bealean ¢ 5 O Scianbas Task Wa [imcusal
fhject origTest = GPMRPEOJRGE (new DusaFile (cencFile), fa w» " R P 8190 Beevert dakags from rordered view
W WA Fu PR 0 | Oplmee XM seriinaton
P A= —————— | Y " o 3ot
tey § ® T A PR AR Updiate pan best attack vakums From SeiASE
openFrojest (newfile, false): & = Ay s
/ v b ¥e » | 4713 s Applcation Securky Testig Paper
-] ST P R 5308+ D ot et et wiskums in WML serislention.
- " S0 Fux PR B394 : Do ok weke cbiects st of def ekt vaued inko 3L serisleation.
1 cateh (n el | " T S Gualey Tasks
W “Caught wrseption cesding secintized iy =4 S5 ot Taka
L I finaldy ¢ - "] SIS Manageswnt Tasks
fIp T T - s5 AT (deleceNewFile) (¥ © Ly Septyentee Toks - Mk [Corcents]
Ul oo ren s neuFile.gecTile() . delete() B 6 B Sachondir Tasks o [Eorcwicl]
] BcManiode 1 1l & 4 3 Septwembar Tasks - Tom. [Conowrts]
1] BCHATag v T [l & & (2 Saptamber Tasks - Torsy [Coroaeta]
] Emoriogoe. e o Eelurn il
i) Pt ra :)
] Flefah jrvn private hoolean skipfile(File tesefile) Uhrows Exception |
String path = testFile.getCanoniealPathil:
e e] ¥ nath = nath renlscel*\i'. /oo -
< &
¥ i, O ¢ e % ¢ A | BTt @ Tew T O
Ao, = ts deliVered s Unifor iy view within [DE # = #r= =
st s £ i o 5 b
2 [2]nerg
= [1] com ool st commmon st i b petstingng
5 ok [Mot eert e e
&l (1] Avend Mot acrpton (0. EXCEPT 181)
5 1 [525] "y sy b ol
= e e (815 - "
ey Tt e (1631 {1
ot e S S S S ———
Jengih e 1) {
= a
Carnegio Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
- © 2018 Carnegie Mellon University release and unlimited distribution. 33

Software Engineering Institute

Noise and perceptions

« “Static analysis is a pain”

» False positives has varying definitions
* |ldon'tlike it
* Itwas wrong

» True false positives in pattern rules means rule

deficiency

» Context
* Does this apply here and now?

* In-code suppressions to document decision
* Flow analysis style False positives are inevitable

* Finds real bugs
* Flow analysis is not comprehensive

Data Flow Diagram Example

— Valid Cmds TL Cmds
Commands Command _ —
Capture o

Command Timeline §
Executive

/ g Command '
ccmm | Executive A [TL Cmds || Cmd Status
| g5 | |

Telemetry
Output

Carnegie Mellon University How Do | Enforce the SEI CERT
N © 2018 Carnegie Mellon University

Software Engineering Institute

C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution. 35

Getting the configuration right

 Rules vs Recommendations

» Severity & Priority levels

» Static Analysis is about process,
It's incremental

» Avoid biting off more than you
can chew

Medium severity,
probable, medium
cost to repair flaws

L2: P6 - P9

Carncgic Mellon Univcrsity How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
© 2018 Carnegie Mellon University release and unlimited distribution. 36

Software Engineering Institute

Select SCALe Assessments

- 6/12 Govl 1,07 1,019

1

- 3/13 Govl C 87.4 28 17,5 86 17,457 200.7
43

_ 10/13 Gov2 C 9,585 18 289 159 130 0.03

“ 6/12 Gov3 Java 4.27 18 345 117 228 80.8

912 Gov2 Java 61.2 33 538 288 250 8.8

11/13 Gov2 Java 17.6 21 414 341 73 23.5

- 2014 Gova Java 653 29 852 64 8,462 13.1
6

_ 3/14 Govs Java 151 8 53 53 0 35.1

— 5114 Mill Java 403 27 3114 723 2,391 7.7

- 111 Gov3 Perl 93.6 36 6,92 357 6,568 74.0
5

5/14 Gov3 Perl 10.2 10 133 84 49 13.0

Carnegie Mellon University [D\STRIBUT\ONSTATEMENTA]Th s material has been approved for public

B release and unlimited distributio
Software Engineering Institute

Parasoft CERT C/C++ Solution DEMO

Complete support for CERT-C-RULES

CERT centric

* Rule names, dashboards and reports

CERT Risk score

* Likelihood, cost, priority

* a technical edge

SEI CERT C Conformance

CERT Compliance

© L1 - Not Compliant

© L2 - Not Gompliant

© L3 - Not Compliant
Cert C-build2

Rules in Compliance
Compliance: CERT C Guideline

66% 1 2«

Rules in Gompliance: 206
Rules Enabled: 313
Violations: 4466

CERT L1 Compliance =

Leval: L1

81.1%

30/37
Cert C-build2

CERT L2 Compliance =

Level: L2

75%

39/52
Cert C-build2

CERT Compliance - Rules by Status =

Typa:Rule Leval: All

22K 3
Violations Deviations

Build: Cert C-build2
Compliance: CERT C 2018

| Totl Remedaton Cost = Ttal Lieihood Scre
63.2 43.3

Sum Sum

CERT Remediation Cost CERT Likelihood

Violatiens by Guideline =
Compliance: CERT C Guideline
Name # of Violations
CERT-INT31_C (RULE) Ensure that in-.- 841
CERT-API00_C (REC) Functions shou 314
CERT-INTO7_C (REC) Use only explic--- 212
CERT-STR04_C (REC) Use plain char.-- 214
CERT-STRO0_C (REC) Represent ch.- 211
more...
Compliance by Priority -
pliance: CERT C Priority
Name Passed / # of Rules
Level 1 - Pricrity 27 " |

Level 1 - Priority 21
Level 1 - Priority 18
Level 1 - Priority 12
Level 2 - Priority 9
Level 2 - Priority 8

Filter
CERTC

CERT Compliance - Recommendations by Status =

Typs: Recommendation Laval: All

2.3K

Violations Deviations

Build: Cert C-build2
‘Compliance: CERT C 2018 L

CERT Rule Violations by Category - TreeMap

Type: All
Build: Cert C-build2 Compliance: GERT C 2018

Integers
CERT-INT31_G CERT-INTO7_C
CERT-INT02_C
CERT-INT18_C
Expressions
CERT- CERT-EXP08_ C CERT-EXP12_C
EXP37_C
CERT- CERT- CERT-
CERT- EXP48_C EXP38_C EXP1S.
EXP00_C
GERT-
EXP36 C CERT- CER € (
- EXP14_ EXPe ~ -

Period Baseline Build Target Bulld

Last 10 builds | First Build in Period Latest Buil

2

Cert C-build2
Level: Al

Characters and Strings. Application Progra

CERT-STRO0_G ~ CERT-STR04_C GERT-APIO0_C

CERT-STR34_C CERT- C
STRI_C <
e

Declarations and Initiali Fleating Point Error Handling

CERT- GERT- CERT- GERT-
DCLO4 G DCL{9_ FLP37_G ERR33_C

CER CEl CE CE CE
DCL DC DC DC A~

POSIX Preprocessor Miscellaneou

CERT-POS54_C ¢ CERT- CERT- CERT-
I PRE31. PRED" MSC09 C

. CERT.
CER1 CER
PREO ysc: MsC
Arays
Input Output Signals
CERT-ARR39_C
GCERT- ct
Fiodic ., Environma

d

CERT Levels i

"

s

c

<
;

Carnegie Mellon University
Software Engineering Institute

How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis

© 2018 Carnegie Mellon University

release and unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public

38

Conclusions

e Security in 10T is extremely important,
especially where safety Is at stake

e Security is achievable if you take a proactive
approach rather than trying to test security Iin

e Tools and process are both important to a
successful SAST Initiative

Carnogio Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic
. . <o ©2018Carnegie Mellon University ~ releaseand unl imited distribution.
Software Engineering Institute

For More Information

David Svoboda

Software Security Engineer
Secure Coding Initiative
Phone: (412) 268-3965
Email: svoboda@cert.org

Arthur Hicken

Evangelist

Parasoft

Phone: (626) 275-2445

Email: codecurmudgeon@parasoft.com

Web Web
www.cert.org/secure-coding www.parasoft.com
www.securecoding.cert.org (wiki)
Secure Coding._eNewsletter
"bERT == Software Englne;fing Institute | Carnegie Mellon University
Carnegie Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
N © 2018 Carnegie Mellon University release and unlimited distribution. 40

Software Engineering Institute

mailto:svoboda@cert.org
mailto:codecurmudgeon@parasoft.com
http://www.cert.org/secure-coding
http://www.securecoding.cert.org/
http://www.parasoft.com/

	How Can I Enforce the SEI�CERT C Coding �Standard Using Static Analysis
	Slide Number 2
	Agenda
	Internet of (Insecure) Things
	Security can be tricky
	Example: Cars are being hacked… �because they talk too much
	Engineering and Development
	Most Vulnerabilities are Caused by Programming Errors
	The CERT C Coding Standard
	CERT Rule Components 1
	CERT Rule Components 2
	CERT Rule Components 3
	CERT Rule Components 4
	Risk Assessment
	Levels and Priorities
	Degrees of Severity
	2011 CWE/SANS Top 25 Most Dangerous Software Errors
	C is the primary language of embedded�
	Barr Group Embedded Security Safety Report �2017 & 2018
	POLL: Secure Coding Standards
	Barr Group Survey 2018:�Coding standards used for embedded safety-critical
	Fix or Prevent
	Policy first
	Training
	Workflow Demo
	Noise and perceptions
	Getting the configuration right
	Select SCALe Assessments
	Parasoft CERT C/C++ Solution DEMO
	Slide Number 39
	For More Information

