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Why secure coding Is a problem

¥ < Whatis CERT

» Why use it
e howto useit

C as a language is back!

Embedded challenges for safety
& security

o Secure-by-Design
e Tips, Tricks, and Traps
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Internet of (Insecure) Things
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Security can be tricky
Security Control
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Example: Cars are being hacked...

because they talk too much

Number of reported incidents

= UHF
o 7o
? RFIDJ

80,000
70,000 67,168
61,214 Distances for Hacking Car Features
60,000 : 5
# Passive anti-theft system
— 48,562 10 meters Radio data system In-car Wif
’ o 42,854 100 meters Varies
g Bluetooth
40,000 10 meters
29,999
30,000
20,000 18,843
11,911
10,000 5503
0
2006 2007 2008 2009 2010 2011 2012 2013 2014 Tire Pressure l———————=& Smart key
Fiscal year monitoring system 5-20 meters
1 meter
Source: GAO analysis of United States Computer Emergency Readiness Team data for fiscal years 2006-2014. | GAO-15-573T
ILLUSTRATION: CHNMNMOMNE
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Engineering and Development

Sustainment

Engineering and Development

Mission Threat : Abuse EArchitecture Coding Testing, Monitoring Breach :
Thread Analysis ¢ Cases : and Design Rules and ¢ Validation Awareness
: : : Principles Guidelines  : and :
: : ¢ Verification : :
H -h------------------l-------------------------------------.:--------------------‘ E
Requirements and Acquisition : Deployment and Operations :
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Most Vulnerabilities are Caused by Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability Database due to programming
errors
* 51% of those were due to classic errors like buffer overflows, cross-site scripting,
injection flaws

Top vulnerabilities include
* Integer overflow
* Buffer overflow
» Missing authentication
» Missing or incorrect authorization
» Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software Security?

cwe.mitre.org/top25 Jan 6, 2015
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The CERT C Coding Standard

Developed with community involvement since Spring 2008
» 1,568 registered experts on the wiki as of February 2014

Version 1.0 (C99) published by Addison-Wesley in
September 2008

Version 2.0 was published in April 2014; extended for

. Cl1 SEI CERT
. ISO/IEC TS 17961 Compatibility C Coding Standard

Rules for Developing Safe, Reliable, and Secure Systems.

Free PDF download published in 2016: e

http://cert.org/secure-coding/products-services/secure-coding-
download.cfm

“Current” guidelines available on CERT Secure Coding wiki
* https://www.securecoding.cert.org
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CERT Rule Components 1

Pages /... / Rec. 01. Declarations and Initialization (DCL) # Edit < Waitch 2 Share ees

DCL22-CPP. Functions declared with [[noreturn]] must return void

Created by Aaron Ballman, last modified on Aug 24, 2016

As described in MSC55-CPP. Do not return from a function declared ns declared with the [ [noreturn]]
attribute must not return on any code path. If a function declared with the 11 attribute has a non-void return value, it
implies that the function returns a value to the caller even though it would result in undefined behavior. Therefore, functions declared
with [ [noreturn] ] must also be declared as returning void.

Noncompliant Code Example

In this noncompliant code example, the function declared o return an int:

Introduction &

#include <cstdlib> Normative

[[noreturn]] int () {
std::exit(0);
return @;

}

This example does not violate MSC55-CPP. Do not return from a function declared [[noreturn]] because std: :exit() is
declared [ [noreturn]], sothe return 0; statement can never be executed.
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CERT Rule Components 2

Noncompliant Code Example

In this noncompliant code example, the function declared with [ [noreturn]] claims to return an int:

#include <cstdlib=

[[noreturn]] int f() {
std::exit(0);
return 9;

}

This example does not viclate MSC55-CPP. Do not return from a function declared [[noreturn]]
because std: :exit() is declared [[noreturn]], so the return @; statement can never be
executed.

Compliant Solution

Because the function is declared [ [noreturn]], and no code paths in the function allow for a return
in order to comply with MSC55-CPP. Do not return from a function declared [[noreturn]], the compliant
solution declares the function as returning void and elides the explicit return statement:

#include <cstdlib=>

[[noreturn]] veoid f() {
std::exit(0);
}

Noncompliant Code

Don’t try this at home!

Compliant Code

Fixes noncompliant code.

Carnegie Mellon University
Software Engineering Institute
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CERT Rule Components 3

Automated Detection

Tool Version  Checker Description

Clang 3.9 -Winvalid-noreturn

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Bibliography

[ISO/IEC 14882-2014]  Subclause 7.6.3, "Noreturn Attribute”

SEI CERT C++ Coding Standard = MSC54-CPP. Value-returning functions must return a value from all exit paths
MSC55-CPP. Do not return from a function declared [[noreturn]]

Carn(‘,gi(’-, Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis
. . < © 2018 Carnegie Mellon University
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CERT Rule Components 4

Risk Assessment

A function declared with a non-void return type and declared with the [ [noreturn]] attribute is
confusing to consumers of the function because the two declarations are conflicting. In turn, it can
result in misuse of the API by the consumer or can indicate an implementation bug by the producer.

Rule Severity  Likelihood Remediation Cost  Priority  Level

DCL22-CPP Low Unlikely Low P3 L3

Automated Detection

Tool Version  Checker Description
Clang 3.9 -Winvalid-noreturn
Carnegio Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
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Risk Assessment

Risk assessment is performed using failure mode, effects, and criticality analysis.

Severity—How serious are the consequences of
the rule being ignored?

Likelihood—How likely is it that a flaw introduced

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium | data integrity violation, uninten-
tional information disclosure

3 high run arbitrary code

Value Meaning

. . . 1 unlikel

by ignoring the rule can lead to an exploitable vul- y

nerability? 2 probable
3 likely
Value Meaning Detection Correction

L . 1 high manual manual

Cost—The cost of mitigating the vulnerability. 9 . -
2 medium | automatic | manual
3 low automatic | automatic
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		Severity – h—How serious are the consequences of the rule being ignored?

				Value 

		Meaning 

		Examples of Vulnerability 



		1 

		low 

		denial-of-service attack, abnormal termination 



		2 

		medium 

		data integrity violation, unintentional information disclosure 



		3 

		high 

		run arbitrary code 









		Likelihood – h—How likely is it that a flaw introduced by ignoring the rule can lead to an exploitable vulnerability?

				Value 

		Meaning 



		1 

		unlikely 



		2 

		probable 



		3 

		likely 









		Cost – t—The cost of mitigating the vulnerability.

				Value 

		Meaning 

		Detection 

		Correction 



		1 

		high 

		manual 

		manual 



		2 

		medium 

		automatic 

		manual 



		3 

		low 

		automatic 

		automatic 














Levels and Priorities

Medium severity,
probable, medium
cost to repair flaws

L2: P6 - P9

Carnegie Mellon University
Software Engineering Institute
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Degrees of Severity

CIA Triad:
« Confidentiality £ A

. %
e Integrity & -3
»  Availability & =
O

Availability

CERT Severity Levels:

Value Meaning Examples of Vulnerability

seve rity_H oW se riou S 1 low denial-of-service attack, abnomal

termination

are the Consequences Of 2 medium | unintentional information disclo-
the rule being ignored? =

3 high run arbifrary code,
privilege escalation
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		Severity – h—How serious are the consequences of the rule being ignored?

				Value 

		Meaning 

		Examples of Vulnerability 



		1 

		low 

		denial-of-service attack, abnormal termination 



		2 

		medium 

		data integrity violation, unintentional information disclosure 



		3 

		high 

		run arbitrary code,
 privilege escalation 









		Likelihood – how likely is it that a flaw introduced by ignoring the rule can lead to an exploitable vulnerability?

				Value 

		Meaning 



		1 

		unlikely 



		2 

		probable 



		3 

		likely 









		Cost – the cost of mitigating the vulnerability.

				Value 

		Meaning 

		Detection 

		Correction 



		1 

		high 

		manual 

		manual 



		2 

		medium 

		automatic 

		manual 



		3 

		low 

		automatic 

		automatic 














2011 CWE/SANS Top 25 Most Dangerous Software

Errors

Rank [Score ID Name

1] 93.8 CWE-89 Irr?pro.pef Neutralization of Special Elements used in an SQL Command ('SQL
— Injection’)

2] 833 CWE-78 Improper Negtra.llza'tlon of Special Elements used in an OS Command ('OS
— Command Injection')

[3] 79.0 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

(4] 777 CWE-79 Impro.pell' Neutralization of Input During Web Page Generation ('Cross-site
. Scripting')

[5] 76.9 CWE-306 Missing Authentication for Critical Function

[6] 76.8 CWE-862 Missing Authorization

[7] 75.0 CWE-798 Use of Hard-coded Credentials

[8] 75.0 CWE-311 Missing Encryption of Sensitive Data

[9] 74.0 CWE-434 Unrestricted Upload of File with Dangerous Type

[10] |73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision

http://cwe.mitre.org/top25/#Listing WE
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C is the primary language of embedded

Fastest growing language 2017 (Tiobe)
Top in employer demand and growth (IEEE Spectrum)

Also C++
80% 2,0%
70%
60% ——
1,0% -
50% +—
o I B
30% — 0,0% - . l . -
4 g
2 P
10% +—— & Ny
-~ v
0% T T 1
C C++ other
Figure 11. Primary Programming Language in Embedded Systems Designs
Barr Group Embedded Survey 2018
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Barr Group Embedded Security Safety Report
2017 & 2018

Secure Coding Practices Adoption %

Coding Standards Code Review Static Analysis Standards no Static

70

60

50

40

30

20

1

o

o

2017 m2018 MW notenforced 18
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POLL: Secure Coding Standards

What coding standards do you use?

CERT
CWE
MISRA
OTHER
NONE

Carnegie Mellon University
Software Engineering Institute
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Barr Group Survey 2018:
Coding standards used for embedded safety-critical

...» Primary Basis Subset: 387
Written Standard? @ Safety standards
proprietary N Not security
MISRA I
Barr Group ==
Linux Kernel W
CERT Secure W
High Integrity C++ |}
JSF++ 1
other.. W ?

0% 20% 40% 60%

Figure 15. Primary Bases for Coding Standards Used in Safety-Critical Products
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Fix or Prevent

Secure-by-design is a movement to create software that is secure rather
than trying to test security into software. By-design is a requirement of GDPR for
privacy and security.

“Although the notion of protecting software is an important one, it’s just plain
easier to protect something that is defect-free than something riddled with

vulnerabilities.”

(Gary McGraw, Cigital)

2

Secure by Design

Carnegie Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
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Policy first

« What teams need to do SA?
« What projects require SA?
 What rules are required?
 What amount of compliance?
* When can you suppress?
 How to handle legacy code?

* Do you ship with SA violations?
 Rules/recommendations?
e Levels?

Carn(‘,gi(‘ ]\’[(‘"()n l,‘nivorsi[\' How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
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Training

e Secure coding basics

e Hacking

* How to use & interpret standards
* IMPORTANCE of security

Carnegie Mellon University How Do | Enforce the SEI CERT C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public
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Workflow Demo

Support for IDE
Support for servers and CI/CD with enforced same configuration

- Directly‘access line of code to fix

B rashum 11 uriew
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Noise and perceptions

« “Static analysis is a pain”

» False positives has varying definitions
* |ldon'tlike it
* Itwas wrong

» True false positives in pattern rules means rule

deficiency

» Context
* Does this apply here and now?

* In-code suppressions to document decision
* Flow analysis style False positives are inevitable

* Finds real bugs
* Flow analysis is not comprehensive

Data Flow Diagram Example

— Valid Cmds TL Cmds
Commands Command _ —
Capture o

Command Timeline §
Executive

/ g Command '
ccmm | Executive A [TL Cmds || Cmd Status
| g5 | |

Telemetry
Output

Carnegie Mellon University How Do | Enforce the SEI CERT
N © 2018 Carnegie Mellon University

Software Engineering Institute

C Coding Standard Using Static Analysis [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution. 35



Getting the configuration right

 Rules vs Recommendations

» Severity & Priority levels

» Static Analysis is about process,
It's incremental

» Avoid biting off more than you
can chew

Medium severity,
probable, medium
cost to repair flaws

L2: P6 - P9
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Select SCALe Assessments

- 6/12  Govl 1,07 1,019

1

- 3/13  Govl C 87.4 28 17,5 86 17,457 200.7
43

_ 10/13  Gov2 C 9,585 18 289 159 130 0.03

“ 6/12 Gov3 Java 4.27 18 345 117 228 80.8

912 Gov2 Java 61.2 33 538 288 250 8.8

11/13  Gov2 Java 17.6 21 414 341 73 23.5

- 2014  Gova Java 653 29 852 64 8,462 13.1
6

_ 3/14  Govs Java 151 8 53 53 0 35.1

— 5114  Mill Java 403 27 3114 723 2,391 7.7

- 111  Gov3 Perl 93.6 36 6,92 357 6,568 74.0
5

5/14  Gov3 Perl 10.2 10 133 84 49 13.0
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Parasoft CERT C/C++ Solution DEMO

Complete support for CERT-C-RULES

CERT centric

* Rule names, dashboards and reports

CERT Risk score

* Likelihood, cost, priority

* a technical edge

SEI CERT C Conformance

CERT Compliance

© L1 - Not Compliant

© L2 - Not Gompliant

© L3 - Not Compliant
Cert C-build2

Rules in Compliance
Compliance: CERT C Guideline

66% 1 2«

Rules in Gompliance: 206
Rules Enabled: 313
Violations: 4466

CERT L1 Compliance =

Leval: L1

81.1%

30/37
Cert C-build2

CERT L2 Compliance =

Level: L2

75%

39/52
Cert C-build2

CERT Compliance - Rules by Status =

Typa:Rule  Leval: All

22K 3
Violations  Deviations

Build: Cert C-build2
Compliance: CERT C 2018

| Totl Remedaton Cost = Ttal Lieihood Scre
63.2 43.3

Sum Sum

CERT Remediation Cost CERT Likelihood

Violatiens by Guideline =
Compliance: CERT C Guideline
Name # of Violations
CERT-INT31_C (RULE) Ensure that in-.- 841
CERT-API00_C (REC) Functions shou 314
CERT-INTO7_C (REC) Use only explic--- 212
CERT-STR04_C (REC) Use plain char.-- 214
CERT-STRO0_C (REC) Represent ch.- 211
more...
Compliance by Priority -
pliance: CERT C Priority
Name Passed / # of Rules
Level 1 - Pricrity 27 " |

Level 1 - Priority 21
Level 1 - Priority 18
Level 1 - Priority 12
Level 2 - Priority 9
Level 2 - Priority 8

Filter
CERTC

CERT Compliance - Recommendations by Status =

Typs: Recommendation  Laval: All

2.3K

Violations  Deviations

Build: Cert C-build2
‘Compliance: CERT C 2018 L

CERT Rule Violations by Category - TreeMap

Type: All
Build: Cert C-build2  Compliance: GERT C 2018

Integers
CERT-INT31_G CERT-INTO7_C
CERT-INT02_C
CERT-INT18_C
Expressions
CERT- CERT-EXP08_ C CERT-EXP12_C
EXP37_C
CERT- CERT-  CERT-
CERT- EXP48_C EXP38_C EXP1S.
EXP00_C
GERT-
EXP36 C CERT- CER € (
- EXP14_ EXPe ~ -

Period Baseline Build Target Bulld

Last 10 builds |  First Build in Period Latest Buil

2

Cert C-build2
Level: Al

Characters and Strings. Application Progra

CERT-STRO0_G ~ CERT-STR04_C  GERT-APIO0_C

CERT-STR34_C CERT-  C
STRI_C <
e

Declarations and Initiali Fleating Point  Error Handling

CERT- GERT- CERT- GERT-
DCLO4 G DCL{9_ FLP37_G ERR33_C

CER CEl CE CE CE
DCL DC DC DC A~

POSIX Preprocessor  Miscellaneou

CERT-POS54_C ¢ CERT- CERT- CERT-
I PRE31. PRED" MSC09 C

. CERT.
CER1 CER
PREO ysc: MsC
Arays
Input Output  Signals
CERT-ARR39_C
GCERT- ct
Fiodic ., Environma

d

CERT Levels i

"

s

c

<
;
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Conclusions

e Security in 10T is extremely important,
especially where safety Is at stake

e Security is achievable if you take a proactive
approach rather than trying to test security Iin

e Tools and process are both important to a
successful SAST Initiative
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For More Information

David Svoboda

Software Security Engineer
Secure Coding Initiative
Phone: (412) 268-3965
Email: svoboda@cert.org

Arthur Hicken

Evangelist

Parasoft

Phone: (626) 275-2445

Email: codecurmudgeon@parasoft.com
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