
On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 1Copyright © 2008 by Philippe Kruchten

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

1 Copyright © 2008 by Philippe Kruchten

On Software Architecture, Agile
Development, Value and Cost

Philippe Kruchten

SATURN
Pittsburgh, April-May 2008

2

Philippe Kruchten, Ph.D., P.Eng., CSDP

Professor of Software Engineering
Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca
604 827-5654

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com
604 418-2006

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 2Copyright © 2008 by Philippe Kruchten

3

Outline

A story
Agile processes and
software/system architecture
Value and cost
• Cost
• Value

Value and cost of architecture
A proposed simple strategy to put value on
architecture

5

Story of a failure

Large re-engineering of a complex distributed
world-wide system; 2 millions LOC in C, C++,
Cobol and VB
Multiple sites, dozens of data repositories,
hundreds of users, 24 hours operation, mission-
critical ($billions)
xP+Scrum, 1-week iterations, 30 then up to 50
developers
Rapid progress, early success, features are
demo-able
Direct access to “customer”, etc.
A poster project for scalable agile development

Synthetic example from
2 projects (finance, aerospace)

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 3Copyright © 2008 by Philippe Kruchten

6

Hitting the wall

After 4 ½ months, difficulties
to keep with the 1-week
iterations
Refactoring takes longer
than one iteration
Scrap and rework ratio
increases dramatically
No externally visible progress anymore
Iterations stretched to 3 weeks
Staff turn-over increases; Project comes to a halt
Lots of code, no clear architecture, no obvious way
forward

7

Agile Processes & Architecture

No BUFD (no Big Up-Front Design)
Incrementally develop (& deliver) value
xP: Metaphor
FDD: Features
Earned-value system
-> burn-down charts
Very short iterations
(a.k.a. sprints)
Refactoring
Gradual emergence of the design…

Agile Alliance 2001

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 4Copyright © 2008 by Philippe Kruchten

8

Context does Matter

For medium to large software-intensive
systems, or in novel systems, an
architecture will NOT gradually emerge as
the result of
constant refactoring.

The Wall
Architecture lacks
sex appeal

Kruchten 2007

9

Value and Cost

Value: to the business (the users, the
customers, the public, etc.)
Cost: to design, develop, manufacture,
deploy, maintain

Simple system, stable architecture, many
small features:
• statistically value aligns to cost

Large, complex, novel systems ?

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 5Copyright © 2008 by Philippe Kruchten

10

Cost

The old:
• Function points, SLOC

=> time
=> $$$

The “new”:
• Story points, ideal days, velocity
• Backlog (Scrum) used to drive increment

content
• Self-tuning process

11

Cost: the classical view

Size Effort

Staff
Duration

Cost

productivity

F.P.
SLOC

SLOC/person-month

person-month

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 6Copyright © 2008 by Philippe Kruchten

12

Cost: the agile view

Size Effort

Staff
Duration

Cost

productivity
velocity

Ideal days

Story points
Actual days

Story point per ideal day

Cohn 2006

13

Value ?

Traditionally in dollars
Decomposition, interdependencies
Priorities (used in XP’s planning game)

Not very successful

Earned Value System muddies
the water even more
• Are we speaking about value?
• Cost? Both?

What is the value of architecture? About nil
• Seen only as an additional cost

Beck 2001

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 7Copyright © 2008 by Philippe Kruchten

14

A Proposed Strategy

Cost in points
Value in units

Get valuation done in relative units (what a unit
mean is irrelevant)
Try to break-down big value elements

Keep value independent from any notion of cost

Relate to: 100-point method, Karl Wiegers’
prioritization scheme, …. AHP, Theory W (?)

Leffingwell 2003, Wiegers 1999, Saaty 1990, Boehm 1989

15

(cont.) Valuing architectural design

Value architecture by taking units from top level,
user-visible features, and flowing them down to
non-visible development elements

How?
• The “revenue taxation” model: 12 % across
• The “head tax” model: collect fixed amount of units
• The “pay-per-use” model: pay a percentage only if it

makes use of it
• The “auction” model ??

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 8Copyright © 2008 by Philippe Kruchten

16

(cont.) Flowing-down value

Need a rich dialog between
• Developers

• Architecture, design
• Dependencies between design “chunks”
• Costing development in points

• Business representatives
• Features, prioritization
• Valuation in units

… during early phases to jointly “flow down”
value to development elements
• ICM: valuation and architecting phases

Boehm & Lane 2007

18

Points (cost) and Units (value)

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 9Copyright © 2008 by Philippe Kruchten

23

Points (cost) and Units (value)

25

Points (cost) and Units (value)

5
7

2
2

4 3 1

6 5

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 10Copyright © 2008 by Philippe Kruchten

26

Some rules for the game

Total value is constant, through flowdown, hence
throughout architectural design
Adding requirements adds value (using relative
units to evaluate)
Total cost evolves with architectural design (it
should go down, or maybe not)
Costs re-evaluated as development progress
(agile concept of velocity)
Value cannot be changed after implementation
to change priorities
Keep costs and values well separated
Can’t deliver architectural bits without user
visible bits (and vice versa)
MMF

27

Key points

Value often not correlated to cost
Express value in relative terms, not absolute $$$
Proceed to architectural design
Re-allocate some of the user-visible value to
non-visible element, with constant sum
MMF = minimum marketable features
Schedule iteration sequence based on fully
valued development elements + dependencies
Better fit to a revised Earned-Value System
Many benefits in the dialog itself (value is in the
journey)

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 11Copyright © 2008 by Philippe Kruchten

28

Value (units), Costs (points), and real $$$

∑ ∑ Dev. $$$
∑ points

Rev. $$$
∑ units

Time

Denne 2004

29

Alternative approaches

CBAM = Cost Benefit Analysis Method
• Chap 12 in Bass, Clements, Kazman 2003

IMF: Incremental Funding Method
• Denne & Cleland-Huang, 2004

Analytic Hierarchy Process
Evolve* - Hybrid

• Günther Ruhe & D. Greer 2003, etc…

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 12Copyright © 2008 by Philippe Kruchten

30

CBAM: Cost Benefit Analysis Method

Concept: Utility
= Value (?)
Utility-response curves: linear, steps, exp.,…

Concept: Scenario
• And priorities

Architectural strategies
• Their value, and utility
• Their cost

Benefit and ROI (Return on Investment)

31

IFM: Incremental Funding Method

MMF = Minimum marketable Features
AE = Architectural elements
• Cost
• MMF depends on AE

Time and NPV = Net Present Value
Strands = Sequences of dependent MMFs

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 13Copyright © 2008 by Philippe Kruchten

32

… but the same issues

How to assign realistic
• Value
• Cost
• Priority

to each chunk of software?
And how to make it appealing to the agile
projects?
• Separation between the visible (feature) and

the invisible (architectural element)
• Make it practical for small and medium teams

33

Conclusion

There is both value and cost in Software
Architecture
They may be articulated in simple, non
financial terms
to assist planning iterative development
and avoid “hitting a wall”.

Start small and simple.
Get fancy later.

On Software Architecture, Agile Development, Value & Cost April-May 2008

SATURN / SEI 14Copyright © 2008 by Philippe Kruchten

36

References
Agile Alliance (2001) Manifesto for Agile Software Development.
http://agilemanifesto.org/
Bass, L., Clements, P., & Kazman, R. (2003). Software
Architecture in Practice (2nd ed.). Reading, MA: Addison-Wesley.
Beck, K., & Fowler, M. (2001). Planning Extreme Programming.
Boston: Addison-Wesley.
Boehm, B. and Lane, J.A. (2007) Using the incremental
commitment model to integrate system acquisition, system
engineering, and software engineering, University of Southern
California, Los Angeles, September 2007.
Boehm, B. & Ross, R. (1989) "Theory-W Software Project
Management: Principles and Examples." IEEE Transactions on
Software Engineering 15 (4) 902-916.
Cohn, M. (2006) Agile Estimating and Planning. Upper Saddle
River, N.J.: Prentice-Hall,
Denne, M., & Cleland-Huang, J. (2004). Software by Numbers:
Low-Risk, High-Return Development, Prentice Hall.

37

References (cont.)
Denne, M., & Cleland-Huang, J. (2004). The Incremental Funding
Method: Data-Driven Software Development IEEE Software,
21(3), 39-47.
Karlsson, J. & Ryan, K. (1997). A Cost-Value Approach for
Prioritizing Requirements, IEEE Software, 14 (5) 67-74.
Kruchten, P. (2007). Voyage in the Agile Memeplex: Agility,
Agilese, Agilitis, Agilology. ACM Queue, 5(5), 38-44.
Leffingwell, D. & Widrig, D. (2003) Managing Software
Requirements: A Use Case Approach, 2nd ed. Boston, MA:
Addison-Wesley.
Maier, M.W. (2006) System and software architecture
reconciliation. Systems Engineering, 9 (2) 146-159.
Ruhe, G. and Ngo-The, A. (2004) Hybrid Intelligence in Software
Release Planning. International Journal of Hybrid Intelligent
Systems, 1, pp 99–110.
Saaty, T. (1990). How to make a decision: The analytic hierarchy
process. European journal of operational research, 48(1), 9-26.
Wiegers, K. (1999). First Things First: Prioritizing Requirements.
Software Development Magazine, 7(9), 48-53.

