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Motivation

* An incorrect software architecture can lead to
problems during development

e Architecture descriptions are becoming larger
and more detailed -> more possibility of bugs
— Ex) Avionics Display System: 21,000 lines

* Expensive to correct the software architecture
in later stages

* Goal: aid the software architect in locating
known defects in software architectures
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Related Work

* Much work exists on software architecture
analysis
— Most only point out existence of defect and not its
location
e Debugging UML Designs

* Little work on debugging software architectures
— Visualization of event traces, Monitoring of events,
Simulation

— No clear definition, process, or method to
debugging software architectures

Research Approach

» Define debugging at the architectural level

» Develop a classification of architectural
defects

* Develop techniques for tracing a defect to its
cause through debugging




Definitions

e Mirror debugging at program level
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Definitions

* Software Architectural Error - Difference exist
between actual and expected software architecture

* Software Architectural Failure - Inability of a software
architecture to meet a functional or nonfunctional
requirement

* Software Architectural Defect — Incorrect, incomplete,
or inconsistent architectural specification, behavior,
or design
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Architectural Defects

» Classification of software architectural defects
— Helps understand possible types of defects

— Depending on defect types, debugging methods will
be different

e Defects can be found at 2 levels
— Structural, Behavioral

» Defects regarding functional and non-functional
requirements




Structural Defects

— Syntactic defects

— Directional defects on connections, flows

— Missing or unintended connections or flows
— Data type mismatches

— Unused components

— Not matching the architectural pattern used
— Too much / too little modularity

— Failure to meet nonfunctional requirements (ex:
modifiability)

Structural Defect Example
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e For structural defects, the failure usually defines region of
interest to find defect




Behavioral Defects

— Receive unexpected event

— Expected event not sent

— Missing activity

— Extraneous activity

— Concurrency issues

— Execution on incorrect states
— Pre / Post conditions violations

— Failure to meet nonfunctional requirements (ex:
performance)

Behavioral Defect Example
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Suppose there are two executing threads — one producing data (t1), one

consuming data (t2)

Assume t1 produces and t2 consumes the same size chunks

Simulation shows the timestamps of the threads executing, where t2 lacks the

speed of t1

Concurrency problem, performance problem are possible defects Over max
buffer size




Debugging Approaches

e Our approach would be heterogeneous, including
— Back trace a failed scenario

— Localize defects through multiple runs of scenarios
* Overlapping areas, divide and conquer

— Apply software architecture slicing
— Perform Simulation
— Perform Model Checking

* |n some cases, localizing a defect to a region in
the architecture may be the correct result

Architecture Slicing
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Simulation
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Model Checking

* Used frequently to find design flaws

— Deadlock, starvation, unreachability, constraint
violations

e Same flaws exist in software architectures

* Provides a counter example/error trace when
flaw is found




CruiseControlSystem

Sensors SENSOrs I

SpeedControly .1y, e setThrottis

¢ Example and image from “Exposing the Skeleton in the Coordination Closet”

by J. Kramer, J. Magee
e This example used by author in classes for 3 years before finding this flaw.

Example of Deadlock

engineOff

enumeOn fo brake,ace

o~ engineOn
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engmeOff

engineOff

Image from “Exposing the Skeleton in the Coordination Closet” by J. Kramer, J. Magee

* Deadlock exists in the software architecture in the event of
engineOn, cruiseControlOn, engineOff, and then engineOn
again.

— Reason: SpeedControl never disabled, leading to a deadlock state.
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Model Checking with JSpin
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Summary & Future Work

Outline of approach to debugging software
architectures

Overview of what is debugging at software
architecture level & how to achieve it

Debugging an architectural defect dependent
on type of defect

Extend debugging for all architectural defects
— Especially, how to debug a quality attribute

Implement the debugging techniques to be
used as tools by the architect

Questions?
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