Debugging Software
Architectures

Kyungsoo Im and John D. McGregor
School of Computing
Clemson University
Clemson, SC 29634

Outline

Motivation
Related Work
Research Approach

Summary & Future Work

Motivation

* An incorrect software architecture can lead to
problems during development

e Architecture descriptions are becoming larger
and more detailed -> more possibility of bugs
— Ex) Avionics Display System: 21,000 lines

* Expensive to correct the software architecture
in later stages

* Goal: aid the software architect in locating
known defects in software architectures

Motivation

Phase in Which a
Defect Is

Introduced
Cost

chm.tcmcms\)\/4—(/ Cost to fix
,/V defect

Architecture \ \ \ Defect >/

detectegy
Construction

Requurements . Construction Post-Release
Architecture System test

Phase in Which a Defect Is Detected

Image from CodeComplete 2™ edition by Steve McConnell

Related Work

* Much work exists on software architecture
analysis
— Most only point out existence of defect and not its
location
e Debugging UML Designs

* Little work on debugging software architectures
— Visualization of event traces, Monitoring of events,
Simulation

— No clear definition, process, or method to
debugging software architectures

Research Approach

» Define debugging at the architectural level

» Develop a classification of architectural
defects

* Develop techniques for tracing a defect to its
cause through debugging

Definitions

e Mirror debugging at program level

Test case

Failure /
symptoms

reveals caused by

]

Debug to find
location of defect

Definitions

* Software Architectural Error - Difference exist
between actual and expected software architecture

* Software Architectural Failure - Inability of a software
architecture to meet a functional or nonfunctional
requirement

* Software Architectural Defect — Incorrect, incomplete,
or inconsistent architectural specification, behavior,
or design

Definitions

Test case

Failure /
symptoms

reveals caused by

EX) Non matching port Component received Incorrect directional
for data/control an event it cannot specification of
transfer handle -- intended for connection

a different component |

Debug to find
location of defect

Architectural Defects

» Classification of software architectural defects
— Helps understand possible types of defects

— Depending on defect types, debugging methods will
be different

e Defects can be found at 2 levels
— Structural, Behavioral

» Defects regarding functional and non-functional
requirements

Structural Defects

— Syntactic defects

— Directional defects on connections, flows

— Missing or unintended connections or flows
— Data type mismatches

— Unused components

— Not matching the architectural pattern used
— Too much / too little modularity

— Failure to meet nonfunctional requirements (ex:
modifiability)

Structural Defect Example

Handle request

|

Map request

| —

Request received
/ locate resource

A
Store request

* Scenario cannot be fulfilled because of missing connection

Update request

e For structural defects, the failure usually defines region of
interest to find defect

Behavioral Defects

— Receive unexpected event

— Expected event not sent

— Missing activity

— Extraneous activity

— Concurrency issues

— Execution on incorrect states
— Pre / Post conditions violations

— Failure to meet nonfunctional requirements (ex:
performance)

Behavioral Defect Example

1a4nq 40 a¥IS

Suppose there are two executing threads — one producing data (t1), one

consuming data (t2)

Assume t1 produces and t2 consumes the same size chunks

Simulation shows the timestamps of the threads executing, where t2 lacks the

speed of t1

Concurrency problem, performance problem are possible defects Over max
buffer size

Debugging Approaches

e Our approach would be heterogeneous, including
— Back trace a failed scenario

— Localize defects through multiple runs of scenarios
* Overlapping areas, divide and conquer

— Apply software architecture slicing
— Perform Simulation
— Perform Model Checking

* |n some cases, localizing a defect to a region in
the architecture may be the correct result

Architecture Slicing

Handle request

A

]/{}E]
T

]/{}{]
}>[Store request

Update request

Map request

[]'_

Request received
/ locate resource

———————— > —>
Indicates the slice though the
architecture

Simulation

File Edt Mavigsts Search Project ADeS Run Window
i R W N
£ Mavigator 52 5 & ¥ =0

EREg] ~
- resut
© trace
- snapshot
=) snp
Jades
[E project v
1 Instances 52 =0
= () testMode03_5_1_Instance ~
= proc
B busace
]
mem
=5 Tp
R
< outPort
> chMode
ER)
> chMode >
= console 53
ADeS Console
L 80 ms] thread 'S I.p.tl'
L 80 ms] thread 'S I.p.tl
L 85 ms] thread 'S I.p.tl
[85 ws] thread '5 I.p.rl
[85 ws] thread '5 I.p.tl
[85 ws] processor 'S I.proc!

<

Help

&

& -

5 stances attributes £

Attribute
Hame
State
Actions list

= Properties

Period

Deactivate_Deadine

<

walue
testMode03_5_I_Instance.p.k2
AWAITING_DISPATCH
Hone

40 ms
5ms

% Evert Manager 52

Current dake: 85 ms (35000000000 ps)

1d
129
148
226
142
149
<

@ ErorLog 52

treats action
has the state
treats event

Date Priority Type Source
e0ms 2 CALL_BACK
90ms 2 CALL_BACK
0ms 2 CALL_BACK
a0ms 4 HYPERPERIOD_END S0M Manager
90ms S TIME QLT

compute (5 ms)
RUNNING
ACTION_ENDED

has no actions list.

has the state
Treats event

AYAITING _DISPATCH
ELEMENT COMPUTATION ENDED

B |8 apes | »
SO0 B a2 T O
~ <?xml version= A
<adesSinulatic
<EVENT LYE
<& letme
<EVEnt
<ewvent
b </eventr v
bl < >
=8
Destination ~

ev_0_testMade03_5_I_Instance.p.t2
evg_2_testMode03_S_I_Instance.p.t2
evg_3_testMode3_S_I_Instance.p.t1

timer testModeD3 5 I Instance.o.kZ

ev_0_testModel

evg_2_testMader

evg_3_testModel

50M Manager

timer testModens ¥
>

u X ¥ =0
X Gl o F5- =08
~
sent by thread 'S_I.p.t1'

sent by processor

'5_I.proc'
>

Model Checking

* Used frequently to find design flaws

— Deadlock, starvation, unreachability, constraint
violations

e Same flaws exist in software architectures

* Provides a counter example/error trace when
flaw is found

CruiseControlSystem

Sensors SENSOrs I

SpeedControly .1y, e setThrottis

¢ Example and image from “Exposing the Skeleton in the Coordination Closet”

by J. Kramer, J. Magee
e This example used by author in classes for 3 years before finding this flaw.

Example of Deadlock

engineOff

enumeOn fo brake,ace

o~ engineOn

0]1, resuimne

engmeOff

engineOff

Image from “Exposing the Skeleton in the Coordination Closet” by J. Kramer, J. Magee

* Deadlock exists in the software architecture in the event of
engineOn, cruiseControlOn, engineOff, and then engineOn
again.

— Reason: SpeedControl never disabled, leading to a deadlock state.

10

Model Checking with JSpin

Eile Edit Spin Conver Option: Setting Outpu SpinSpid¢ Help |LTqurmuIa | ‘
Open ‘ Check H Random ” Interactive || Trail | Weak fairness ‘Safety |V‘ ‘\lerify || 5ton| | Translate || Clear H Load | |SpinSpi(
! FCCOCONTROC I =T a7 TTTETT O PO 4 Ean: imvalid end state (at depth 16)
Sg Zpan: wrote EX-Cruise3.pml.trail
24 (Spin Yersion 4.3.0 -- 22 June 2007)
sMarning: Search not completed
gg EFOCtype engon{} B + Partial Order Reduction
27 current?ENGINEON -> ENGINERUNNING = true; fun Staﬁ:\fgf;;i;“h for: _
gg “[(none specified)
20 g assertion wiolations +
i cycle checks -
s ’%mtype eruetr) Hedisabled by -DSAFETY)
- _ _ i invalid end states +
33 3 current?OrF -> CRUISING = false; State-vector 40 byte, depth reached
. 16, --- errors: 1 .-
e i 11 states, steored
0 states, matched
37 proctype actionType() 11 Transitions (=
gg gnd- dstoredimatched)
o “do E 4 atemic steps
41 i (action == NONE) —» action — ENGINEON -» cun | gaggzc"”r?e;]gﬁs:uga(geﬁﬁgvigg
42 {action EMGINEON) - action = OM -» currd ; . ¥ £ ¥
43 (action ON) -» action = OFF; current!oFF;
44 :: (action == OFF) -= action = ENGIMEOFF;
4 Ii [[
e : : 5
T TIT T
bin\spin.exe -a -v EX-Cruised.pml ... done
binyspin.exe -a Ex-Cruised.pml ... done
cohvmingwhbinhgcc.exe -DSAFETY -0 pan pan.c ... done
C:hvjspimyjspin-examplesipan -mz000 -% ... done

Error Trace

14: proc 1 [(ictionType) line 40 "pan in" (state 14)

[{{action==ENGINEON))]

15: proc 1 [(ictionType) line 42 "pan in" (state 5) [action = ON]

spin: trail ends after 15 steps
#processes 5:

15: proc O [(zinit:) line &8 (state 7
—end-

15: proc 1 [(ActionType) line 42 (state 6] [(invalid end state)
current ! 0N

15: proc & [(engon) line 30 (state 5)
—end-

15: proc 3 [(cruon) line 21 (state 5] (inwvalid end state)
[{(SPEEDCCNTROL ING==0))

15: proc 4 [cruocff) line 33 (state 3) [inwvalid end state)
current ?OFF

11

Summary & Future Work

Outline of approach to debugging software
architectures

Overview of what is debugging at software
architecture level & how to achieve it

Debugging an architectural defect dependent
on type of defect

Extend debugging for all architectural defects
— Especially, how to debug a quality attribute

Implement the debugging techniques to be
used as tools by the architect

Questions?

12

