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o Current: Agile Architectures, Domain-Driven Design,
Architecture Enforcement, Model Driven Development
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Goals for this Presentation

o Overview of Reference Architecture (RA) and its
significance in EA

o How Aspects and AOP can help to enforce RA and
manage Architecture Governance

Format

O Interactive

o Demos

O Duration: 760 minutes

oQ&A

o Prerequisite: Familiarity with AOP and Aspects




Before we start...

O How many currently have some kind of Reference
Architecture in place?

o How many actually use RA to enforce architecture?

Agenda

O Reference Architecture & Enforcement

o Architecture Rules Categories

O Architecture Enforcement Approaches

O Aspect-oriented Programming

O Rules Demo(s)

O Cl Process Changes

o Case Study

O Architecture Rules Aspects - Open Source Project




Agenda

O Reference Architecture & Enforcement
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Reference Architecture

O A high-level system design which consists of:
= description of system components
» definitions of relationships between components

» definitions of relationships between system components &
elements external to the system




Architecture Enforcement

O Architecture Rules:
= Rules (compile time as well as run time) used to assert
architecture.
o Architecture Governance:

m Construct an Architecture Contract to govern overall
implementation & deployment process.

= Perform appropriate governance functions while system is
being implemented and deployed.

= Ensure conformance with defined architecture by
implementation projects

Architecture Enforcement Maturity
Model

o Level 0: No RA

O Level 1: RA is described in a Word/HTML/PDF
document

O Level 2: Semi-automated checking mechanism for
architecture enforcement

o Level 3: Fully automated checking mechanism
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Why Architecture Enforcement?

o Checking mechanism to enforce Reference
Architecture

o Match Requirements (Architecture) to
Implementation (Code)

O Detect and prevent structural complexity
O Promotes consistency and modularity in the System

O Aids in Architecture, Design, and Code refactoring
efforts
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Architecture Rules

O Business v. Architecture Rules
m Architecture rules are as important as business rules
O Code Quality By Design

= Unit tests, TDD & BDD only help with code quality from
functional requirements stand-point

= Need for a process to ensure code quality from design
stand-point

O Technical Credit
» Good Design, Testable and Integrated Code
= Code that complies with Architecture/Design Policies
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Types of Enforcement

O Layered architecture and application module
dependencies

O APl usage (internal and 3rd party)
o Coding Policies

o Code-Naming Conventions

O Design Patterns and Best Practices
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Setup Types

O Static analysis
= Allows for easy visual representation

= Techniques
= AOP, Aspectd

= Tools
= Structure 101
= SonarJ
= Lattix
o Dynamic analysis
= Based on the program flow
= Rule-set usable at runtime
= Techniques: Aspectd/Spring AOP
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Agenda

m|
O Architecture Rules Categories
m]
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Rule Categories

O Layered Architecture

O Separation Of Concerns
0 Domain-Driven Design
O Infrastructure

O Miscellaneous
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Rules - Layered Architecture

O Presentation layer should not use DAO classes
directly

O Service layer never calls web layer

o DAO (Persistence) layer depends on no other layer
except domain

17

Rules - Separation of Concerns

o No transaction management in DAO classes
o Only DAQO's should reference javax.sql classes

o Only Controller classes are aware of Web/HTTP
objects

O Service layer should be transactional

O External systems can not access internal
implementation classes (*Impl classes)
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Rules - Domain-Driven Design

O Service object creation via a Factory (i.e. no “new
Service()” code)

O No direct access to DAO’s except from Domain
classes

O Business service that fails with a concurrency
related failure can be retried
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Rules - Infrastructure

O No direct use of API:
» Log4J or Commons Logging (use Framework Logger)
» JavaMail (use MailService component)
= FTP (use FileTransferService component)

O No System.out.println statement anywhere in the
code
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Rules - Miscellaneous

o All primary key classes (*PK.java) should implement
Serializable interface

o All test classes should be named with the suffix
“Test”

21

Persistence

O Hibernate session close only allowed in EJB's and
Servlet Filters

o DAO's accessing DB Views use JDBC (no
Hibernate)

O Use SpringJdbcTemplate for JDBC data access
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Other Domain Concerns

O Auditing
= Domain state change tracking
O Monitoring
= Aspects to implement MonitorMBean interface
= Expose Results as an MBean
= Publish results using RSS feeds
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Agenda

Architecture Enforcement Approaches
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Approaches

o Code Inspections

O Architecture Reconstruction

0 Model Driven Architecture (MDA)

O Code Generation

O Byte Code Instrumentation

o Enforcement Tools

O Aspect-oriented Programming (AOP)
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Architecture Analysis Tools

o Macker

O ArchitectureRules

o Classycle

O PatternTesting

o Contract4J

o Structure 101, Lattix, SonarJ
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Architecture Analysis Tools

O Structure 101
= Slicing / Rules
o SonarJ

= Logical architecture definition & Physical mapping of
architecture to Java code

O Lattix

= Dependency Structure Matrix showing the Desired vs. the
Realized architecture implementation
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Aspect-oriented Programming

O Add behavior to objects in a non-obtrusive manner
through static and dynamic crosscutting

O Code cross-cutting concerns in separate modules
and apply them in a declarative way
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AOP Use Cases

O Spring Framework Built-In Aspects:
» Transaction Management
= Security
o Custom Aspects:
» Profiling
» Caching
= Architecture Rules
» Contract Enforcement
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AOP in Architecture Enforcement

O Provides the necessary abstraction to enforce rules

O Customized compile-time error or warning
messages

O Less intrusive
O Target application code is not modified in any form
O Rules can be turned on or off any time
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Enforcement: Aspects or Tools?

O Question:
m AOP or Tools?
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Enforcement: Aspects or Tools?

O Tools:
= +Better enforcement options
» -Licensing costs
O Aspects
= +More flexibility for customization
» -Relatively intrusive
= -Not backed by an architecture meta model
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Enforcement: Aspects or Tools?

O Question:
m AOP or Tools?

O Answer:
m It depends..
= Choose the right tool to do the right job

34




>
Q
@
-
Q.
Q

Rules Demo(s)

OO0OO0OO0O0O0OoO0 0

35

Architecture Rules Enforcement

o IDE (Eclipse, AJDT)
o Build Process Changes (Ant, CruiseControl)
0 RSS Feeds (Rome)
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Sample Application

o Tools:
= Eclipse
= AspectJ
= AJDT
m Spring AOP
= Ant
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Sample Application - Eclipse
Eim.ﬁ} @ Javadoc | (&, Dedration | ] Console | {0 Auds | [
6 errors, 46 warnings, 0 infos
Description_~ [ Resource [[path [ Location |
= = Errors (6 items)
@ Don't print to Console, use Framework Logger BorrowerService.java ArchitectureRulesClient/src/mainfjavajcomifsbf... line 41
@ Don't print to Console, use Framework Logger i line 22
@ o external dependencies on Controller Layer BorrowerService.java ArchitectureRulesClient/src/mainfjavajcomjfsb... e 45
@ Only DAO class should use JPA APT BorrowerService.java ArchitectureRulesClent/src/mainjjavajcomifsbi... ne 49
@ only Domain class should reference DAO Classes BorrowerService.java ArchitectureRulesClint/sre mainfjavajcomifsb... lne 53
@ Subdlasses of Exception should terminate in ‘Exception’ e 10
11 Warnings (48 items)
& Cathe is a raw type. References to generic type Cache <K, > should be parameterized JBossCachefspect.java ArchitectureRulesRunTime/srcjmainfaspectsfco... e 26
& CatheFactory is a raw type. References to generic type CacheFactory <k,¥> should be parameterized JBossCachefspect.java ArchitectureRulesRunTime/srcjmain/aspects/co... ne 25
& DefaukCacheFactory is a raw type. generic type DefaukC > should be JBossCacheAspect java ArchitectureRulesRunTime/srcjmain/aspects/co... ne 36
& Donit use Commans Logaing, use Framework Logger BorrowerController java ArchitectureRulesClint/srcmainfjavajcomifsb... lne 17
& Don't use Commans Logging, use Framework Logger BorrowerController java ArchitectureRulesClient/src/mainjjavajcomyfsb]... ine 20
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Layered Architecture Rules

O Service classes should not depend on Application
layer classes

39

o DEMO
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Domain-Driven Design Rules

o No direct access to DAO's except from Domain

classes (go through Domain or Repository objects)
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Typical J2EE Architecture Model

Application

Data Store

aaaaaaaaaaaaaaaaaaaaa
nnnnnnn
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Domain Driven Architecture

Application

Controller

l

Facade

[

Domain

n

Domain

L

Data Access/
Persistence

Data Store

!

Data Access Object

Database

Infrastructure

HTTP

Session Management
Remoting

Persistence

Caching

Transaction Management
Security (Authentication &
Authorization

= Asynchronous Messaging

Nots

es:
AllLayers support POJO based design
Controller and F agade layers are consumers of
Domain Classes

Business Logic only in Domain Classes

No direct Accessto DAO's except from Domain

Domain First, Infrastructure Second
Infrastructure concerns are implemented via DI,
AP, Annotations
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o DEMO
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DDD Rules Demo 2

O Business service that fails with a concurrency
related failure can be retried

o Caching example

= Spring AOP and EHCache

= Requirement: To cache specific data (objects) using a
custom Annotation

= Annotation: @CacheEntity

45

o DEMO
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Infrastructure Rules

O No direct use of API:
= Log4J or Commons Logging (use Framework Logger)
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o DEMO
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Cl Process Changes

O Build process changes to include Architecture rules
task

O Part of build process (in Local and Integration
environments)

o Deviations are published nightly as RSS feeds

O Identified deviations are used in conducting design
and code reviews
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Case Study
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Case Study

O Implementation Plan:
= Phase 1 (Day 1): Enable rules but not enforce them (yet)

= Phase 2 (Day 16): Enable rules and enforce only critical
Errors (No Warnings)

= Phase 3: Enable rules and enforce all deviations (Errors &
Warnings)

m Phase 4: Enable rules and enforce all Errors and
Warnings in all applications in the enterprise
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Architecture Rules Aspects

o Open source Google project

= architecture-rules-aspects (http://code.google.com/p/
architecture-rules-aspects/)

O Future road-map:
= DSL to define architecture rules (e.g. Groovy)
» Define rules in a Rules Engine (JBossRules)
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Implementation Road Map

O Publish rules along with Reference Architecture
(RA) and Standard Technology/Framework Stack

O Pick a pilot application to enforce architecture rules
as part of the build process (and Eclipse IDE)

O Incorporate architecture enforcement into other
applications

o Training/Mentoring as part of an on-going
Architecture Governance effort
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Conclusions

O Make architecture rules part of build process to
detect deviations earlier in SDLC

O Use enforcement check results to improve
architecture/design/code (via refactoring efforts)

O Capture design patterns and best practices as policy
enforcement Aspects

O Refine & refactor enforcement rules
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AOP Tools

o AJDT

o Spring AOP

O MaintainJ: Sequence Diagram Using AspectJ
O PointcutDoctor

O Jexin
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Contact Information

o Domain-Driven Design and Enterprise Architecture
articles on InfoQ

o InfoQ website (http://www.infog.com)
o E-Mail: srinipenchikala@gmail.com
0 Blog: http://srinip2007.blogspot.com
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oQ&A
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Thank You

O Thank you for your attention
O Feedback survey
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