Architecture Rules Enforcement
and Governance Using Aspects

Srini Penchikala
SATURN 2009

About the Speaker

o Enterprise Architect
o Writer, Speaker, Editor (InfoQ)
o Detroit Java User Group Leader

o Working with Java since 1996, JEE (2000), SOA (2006),
& PowerPoint since Sep 2008

o Current: Agile Architectures, Domain-Driven Design,
Architecture Enforcement, Model Driven Development

O Future: Role of DSL's in Architecture Enforcement

Goals for this Presentation

o Overview of Reference Architecture (RA) and its
significance in EA

o How Aspects and AOP can help to enforce RA and
manage Architecture Governance

Format

O Interactive

o Demos

O Duration: 760 minutes

oQ&A

o Prerequisite: Familiarity with AOP and Aspects

Before we start...

O How many currently have some kind of Reference
Architecture in place?

o How many actually use RA to enforce architecture?

Agenda

O Reference Architecture & Enforcement

o Architecture Rules Categories

O Architecture Enforcement Approaches

O Aspect-oriented Programming

O Rules Demo(s)

O Cl Process Changes

o Case Study

O Architecture Rules Aspects - Open Source Project

Agenda

O Reference Architecture & Enforcement

OO0OO0OO0O0O0oaQg

Reference Architecture

O A high-level system design which consists of:
= description of system components
» definitions of relationships between components

» definitions of relationships between system components &
elements external to the system

Architecture Enforcement

O Architecture Rules:
= Rules (compile time as well as run time) used to assert
architecture.
o Architecture Governance:

m Construct an Architecture Contract to govern overall
implementation & deployment process.

= Perform appropriate governance functions while system is
being implemented and deployed.

= Ensure conformance with defined architecture by
implementation projects

Architecture Enforcement Maturity
Model

o Level 0: No RA

O Level 1: RA is described in a Word/HTML/PDF
document

O Level 2: Semi-automated checking mechanism for
architecture enforcement

o Level 3: Fully automated checking mechanism

10

Why Architecture Enforcement?

o Checking mechanism to enforce Reference
Architecture

o Match Requirements (Architecture) to
Implementation (Code)

O Detect and prevent structural complexity
O Promotes consistency and modularity in the System

O Aids in Architecture, Design, and Code refactoring
efforts

11

Architecture Rules

O Business v. Architecture Rules
m Architecture rules are as important as business rules
O Code Quality By Design

= Unit tests, TDD & BDD only help with code quality from
functional requirements stand-point

= Need for a process to ensure code quality from design
stand-point

O Technical Credit
» Good Design, Testable and Integrated Code
= Code that complies with Architecture/Design Policies

12

Types of Enforcement

O Layered architecture and application module
dependencies

O APl usage (internal and 3rd party)
o Coding Policies

o Code-Naming Conventions

O Design Patterns and Best Practices

13

Setup Types

O Static analysis
= Allows for easy visual representation

= Techniques
= AOP, Aspectd

= Tools
= Structure 101
= SonarJ
= Lattix
o Dynamic analysis
= Based on the program flow
= Rule-set usable at runtime
= Techniques: Aspectd/Spring AOP

14

Agenda

m|
O Architecture Rules Categories
m]

OOoOooao

15

Rule Categories

O Layered Architecture

O Separation Of Concerns
0 Domain-Driven Design
O Infrastructure

O Miscellaneous

16

Rules - Layered Architecture

O Presentation layer should not use DAO classes
directly

O Service layer never calls web layer

o DAO (Persistence) layer depends on no other layer
except domain

17

Rules - Separation of Concerns

o No transaction management in DAO classes
o Only DAQO's should reference javax.sql classes

o Only Controller classes are aware of Web/HTTP
objects

O Service layer should be transactional

O External systems can not access internal
implementation classes (*Impl classes)

18

Rules - Domain-Driven Design

O Service object creation via a Factory (i.e. no “new
Service()” code)

O No direct access to DAO’s except from Domain
classes

O Business service that fails with a concurrency
related failure can be retried

19

Rules - Infrastructure

O No direct use of API:
» Log4J or Commons Logging (use Framework Logger)
» JavaMail (use MailService component)
= FTP (use FileTransferService component)

O No System.out.println statement anywhere in the
code

20

Rules - Miscellaneous

o All primary key classes (*PK.java) should implement
Serializable interface

o All test classes should be named with the suffix
“Test”

21

Persistence

O Hibernate session close only allowed in EJB's and
Servlet Filters

o DAO's accessing DB Views use JDBC (no
Hibernate)

O Use SpringJdbcTemplate for JDBC data access

22

Other Domain Concerns

O Auditing
= Domain state change tracking
O Monitoring
= Aspects to implement MonitorMBean interface
= Expose Results as an MBean
= Publish results using RSS feeds

23

Agenda

Architecture Enforcement Approaches

OO0 00O00O0OOaOg

24

Approaches

o Code Inspections

O Architecture Reconstruction

0 Model Driven Architecture (MDA)

O Code Generation

O Byte Code Instrumentation

o Enforcement Tools

O Aspect-oriented Programming (AOP)

25

Architecture Analysis Tools

o Macker

O ArchitectureRules

o Classycle

O PatternTesting

o Contract4J

o Structure 101, Lattix, SonarJ

26

Architecture Analysis Tools

O Structure 101
= Slicing / Rules
o SonarJ

= Logical architecture definition & Physical mapping of
architecture to Java code

O Lattix

= Dependency Structure Matrix showing the Desired vs. the
Realized architecture implementation

27

Agenda

O
O
O
O Aspect-oriented Programming
O

a
O
O

28

Aspect-oriented Programming

O Add behavior to objects in a non-obtrusive manner
through static and dynamic crosscutting

O Code cross-cutting concerns in separate modules
and apply them in a declarative way

29

AOP Use Cases

O Spring Framework Built-In Aspects:
» Transaction Management
= Security
o Custom Aspects:
» Profiling
» Caching
= Architecture Rules
» Contract Enforcement

30

AOP in Architecture Enforcement

O Provides the necessary abstraction to enforce rules

O Customized compile-time error or warning
messages

O Less intrusive
O Target application code is not modified in any form
O Rules can be turned on or off any time

31

Enforcement: Aspects or Tools?

O Question:
m AOP or Tools?

32

Enforcement: Aspects or Tools?

O Tools:
= +Better enforcement options
» -Licensing costs
O Aspects
= +More flexibility for customization
» -Relatively intrusive
= -Not backed by an architecture meta model

33

Enforcement: Aspects or Tools?

O Question:
m AOP or Tools?

O Answer:
m It depends..
= Choose the right tool to do the right job

34

>
Q
@
-
Q.
Q

Rules Demo(s)

OO0OO0OO0O0O0OoO0 0

35

Architecture Rules Enforcement

o IDE (Eclipse, AJDT)
o Build Process Changes (Ant, CruiseControl)
0 RSS Feeds (Rome)

36

Sample Application

o Tools:
= Eclipse
= AspectJ
= AJDT
m Spring AOP
= Ant

37
" " .
Sample Application - Eclipse
Eim.ﬁ} @ Javadoc | (&, Dedration |] Console | {0 Auds | [
6 errors, 46 warnings, 0 infos
Description_~ [Resource [[path [Location |
= = Errors (6 items)
@ Don't print to Console, use Framework Logger BorrowerService.java ArchitectureRulesClient/src/mainfjavajcomifsbf... line 41
@ Don't print to Console, use Framework Logger i line 22
@ o external dependencies on Controller Layer BorrowerService.java ArchitectureRulesClient/src/mainfjavajcomjfsb... e 45
@ Only DAO class should use JPA APT BorrowerService.java ArchitectureRulesClent/src/mainjjavajcomifsbi... ne 49
@ only Domain class should reference DAO Classes BorrowerService.java ArchitectureRulesClint/sre mainfjavajcomifsb... lne 53
@ Subdlasses of Exception should terminate in ‘Exception’ e 10
11 Warnings (48 items)
& Cathe is a raw type. References to generic type Cache <K, > should be parameterized JBossCachefspect.java ArchitectureRulesRunTime/srcjmainfaspectsfco... e 26
& CatheFactory is a raw type. References to generic type CacheFactory <k,¥> should be parameterized JBossCachefspect.java ArchitectureRulesRunTime/srcjmain/aspects/co... ne 25
& DefaukCacheFactory is a raw type. generic type DefaukC > should be JBossCacheAspect java ArchitectureRulesRunTime/srcjmain/aspects/co... ne 36
& Donit use Commans Logaing, use Framework Logger BorrowerController java ArchitectureRulesClint/srcmainfjavajcomifsb... lne 17
& Don't use Commans Logging, use Framework Logger BorrowerController java ArchitectureRulesClient/src/mainjjavajcomyfsb]... ine 20

38

Layered Architecture Rules

O Service classes should not depend on Application
layer classes

39

o DEMO

40

Domain-Driven Design Rules

o No direct access to DAO's except from Domain

classes (go through Domain or Repository objects)

41

Typical J2EE Architecture Model

Application

Data Store

aaaaaaaaaaaaaaaaaaaaa
nnnnnnn

42

Domain Driven Architecture

Application

Controller

l

Facade

[

Domain

n

Domain

L

Data Access/
Persistence

Data Store

!

Data Access Object

Database

Infrastructure

HTTP

Session Management
Remoting

Persistence

Caching

Transaction Management
Security (Authentication &
Authorization

= Asynchronous Messaging

Nots

es:
AllLayers support POJO based design
Controller and F agade layers are consumers of
Domain Classes

Business Logic only in Domain Classes

No direct Accessto DAO's except from Domain

Domain First, Infrastructure Second
Infrastructure concerns are implemented via DI,
AP, Annotations

43

o DEMO

44

DDD Rules Demo 2

O Business service that fails with a concurrency
related failure can be retried

o Caching example

= Spring AOP and EHCache

= Requirement: To cache specific data (objects) using a
custom Annotation

= Annotation: @CacheEntity

45

o DEMO

46

Infrastructure Rules

O No direct use of API:
= Log4J or Commons Logging (use Framework Logger)

47

o DEMO

48

>
Q
@
-
Q.
Q

Cl Process Changes

OO0OO0OO0O0O0OoO0 0

49

Cl Process Changes

O Build process changes to include Architecture rules
task

O Part of build process (in Local and Integration
environments)

o Deviations are published nightly as RSS feeds

O Identified deviations are used in conducting design
and code reviews

50

Publish
Architecturd

Complle conplle
e o]
\
Run Uni Toss un prnciure Viatong >—¥
v

'

Display message

Run Unit Tests 41 about the Error
and prevent SCM
Comi

Package

Deploy Package

Deploy.

51

‘ommand Prompt
ient>
~rules-build.xnl run.arch.rules

ots Researchlabs\Roferenceirchitecture\irchitectureRulosClio
earchLabs\Referencefr: RulesClient>ant —buildfile build/ar

dev\proj
R AR SR sec

\dev\proj
N hitecture\Architectu

1~|\|\.<\rcl| -rule
varning ag private atatis keg dog 2 kegRaskons st hog Rannuansany
deu\px-nger.t \Rs‘seir:hhab*‘\“ef:ren:nﬂl hitecture\ArchitectureRulesClient\src\main\java\com\fsh\ra\controller\Borrow
Yt use Commons Lo
ajel e also:
CureNInfras
ning. Ak, dog:ashug e
jc1 C:N\dev\projects\ResearchLahs\Ref cn.nr,cllrch)tm ture\ArchitectureRulesCli \Borrou troller.
Don t use Common, Logging, use Framewor! 0
c \(l\.u\pmm cts\R eavdnl.ah:.\lhlerf. cefirchitecture\ArchitectureRule:
ructure. sAspect .class 3[\ E Log CF: KyEil.cl s
ey nanning b pituate sea o ctory getlogCFraneuorkltil.class)s
ey wemas PRI ssatic Log dog. 2 LegRactony:getheq
[ajc]1 C:\deulprojects\ResearchLabs\ReferenceirchitectureNrchitectureRulesClient\sreinaintjavatcomshirat raneuorkut i1\Franevorkltil. java:19:0)
RulesCompileTine\bintcon\fshararfraneuorkhaspectssarchrules\

0 Don’ : yse Commons_Logging,

t\src\main\javascomFsh\ratcontrolle

ConpileTine\bin?comfsh\ra\franeuorkiaspectsiarchrules\il

Framework Logger
\ResearchLabs\Referencefr

¢
Tagel warmingat privace seatie Lo rousrSoryice.clas
i tureRulesCl:

C:\dev\projects:
ons Logging. use Frameuo . e
1so t \Re;zr\rv_]\th* \Referencefrchitecture\ArchitectureRulesConpileT in:

n\java\com\fsb\ra\service\BorrouerService . java:23:8::8 D|
\bintcom\Fshira\franeuorkias archrules\i]

structure Jnlcas*ru:tllreﬂuLe*Rape:t clas
Laje] yarning at log.debu
il A A2stzd
Tajc] Cindey

Conm,
Lajo
nfrastructureNIngr

fajel exox "ab. Systen;out

vp
sh
gluntln' TEST AEsoRGE" 3

de 34

[«J\,] c \lleu\px-uJ»\.L-, ~N» earchLabs\Refe: eArchitectureNArchitectureRulesClient\src\nain\java\com\fsh\ra\service\BorroverService.java:41:0

jon’ t pr nt to Console, work Logger

see als l‘ﬂJEEtg\REaEal‘E’ILR‘)S \Referencefirchitecture\ArchitectureRulesCompileTime\bin?con\fsh\ra\franework\aspects\archrules
astruc cureRuleshep 262

A Barreverdantns Lok exoon

Lajcl

b e rastructuresing
[ajc] error &i°

\nain\java\com\fsh\ra\service\BorrouerService . java:45:0::0 N|

hitectureRulesClient\sr
hrules\s

ReferenceArchitecture\re
tureRulesConpileTine\bin

om\Fsh\ra\franeuorky

[ajc] C:\dev\projects\ResearchLabs\I
extoxnal dependencies o ntroller Layor
fa, see a project \R-::r,arr]\l.ub \Referencefrchitecture\Archis
oc\t‘.tpar tinnUAConchn)mlc,mp c [}
error at em

52

>
Q
@
-
Q.
Q

Case Study

OO0OO0OO0O0O0OoO0 0

53

Case Study

O Implementation Plan:
= Phase 1 (Day 1): Enable rules but not enforce them (yet)

= Phase 2 (Day 16): Enable rules and enforce only critical
Errors (No Warnings)

= Phase 3: Enable rules and enforce all deviations (Errors &
Warnings)

m Phase 4: Enable rules and enforce all Errors and
Warnings in all applications in the enterprise

54

Architecture Rules Aspects

o Open source Google project

= architecture-rules-aspects (http://code.google.com/p/
architecture-rules-aspects/)

O Future road-map:
= DSL to define architecture rules (e.g. Groovy)
» Define rules in a Rules Engine (JBossRules)

55

Implementation Road Map

O Publish rules along with Reference Architecture
(RA) and Standard Technology/Framework Stack

O Pick a pilot application to enforce architecture rules
as part of the build process (and Eclipse IDE)

O Incorporate architecture enforcement into other
applications

o Training/Mentoring as part of an on-going
Architecture Governance effort

56

Conclusions

O Make architecture rules part of build process to
detect deviations earlier in SDLC

O Use enforcement check results to improve
architecture/design/code (via refactoring efforts)

O Capture design patterns and best practices as policy
enforcement Aspects

O Refine & refactor enforcement rules

57

AOP Tools

o AJDT

o Spring AOP

O MaintainJ: Sequence Diagram Using AspectJ
O PointcutDoctor

O Jexin

58

References (1/2)

O Architecture Rules Aspects Google Project (

o AspectJ In Action (2" Edition)

O Building Software As Solid As The Pyramids
(Ramnivas Laddad & Alef Arendsen)

O Using Aspect-Oriented Programming to Enforce
Architecture (Paulo Merson)

O AOP In the Enterprise (Adrian Colyer)
O Aspects & policy injection - clean up your code
o Policy Injection Application Block

59

References (2/2)

o Structure 101

O SonarJ ()

O Lattix

o Contract4d ()
O Macker ()

0 Rome - RSS Feeds Framework (https://
rome.dev.java.net/)

60

Contact Information

o Domain-Driven Design and Enterprise Architecture
articles on InfoQ

o InfoQ website (http://www.infog.com)
o E-Mail: srinipenchikala@gmail.com
0 Blog: http://srinip2007.blogspot.com

61

oQ&A

/ i
Modelling \
TN A
s \1/ ondy/>/ T
(Prcess —(Pagple
Niim >,

Non-Linear First-Order Components

Alistair Cockburn

62

Thank You

O Thank you for your attention
O Feedback survey

63

