
4/27/09

1

Architecture Rules Enforcement
and Governance Using Aspects

Srini Penchikala

SATURN 2009

2

About the Speaker
  Enterprise Architect

  Writer, Speaker, Editor (InfoQ)

  Detroit Java User Group Leader

  Working with Java since 1996, JEE (2000), SOA (2006),
& PowerPoint since Sep 2008

  Current: Agile Architectures, Domain-Driven Design,
Architecture Enforcement, Model Driven Development

  Future: Role of DSL's in Architecture Enforcement

4/27/09

2

3

Goals for this Presentation

  Overview of Reference Architecture (RA) and its
significance in EA

  How Aspects and AOP can help to enforce RA and
manage Architecture Governance

4

Format
  Interactive

 Demos

 Duration: ~60 minutes

 Q & A

 Prerequisite: Familiarity with AOP and Aspects

4/27/09

3

5

Before we start…

  How many currently have some kind of Reference
Architecture in place?

  How many actually use RA to enforce architecture?

6

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

4/27/09

4

7

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

8

Reference Architecture
 A high-level system design which consists of:

  description of system components
  definitions of relationships between components

  definitions of relationships between system components &
elements external to the system

4/27/09

5

9

Architecture Enforcement
 Architecture Rules:

  Rules (compile time as well as run time) used to assert
architecture.

 Architecture Governance:
  Construct an Architecture Contract to govern overall

implementation & deployment process.
  Perform appropriate governance functions while system is

being implemented and deployed.

  Ensure conformance with defined architecture by
implementation projects

10

Architecture Enforcement Maturity
Model
 Level 0: No RA

 Level 1: RA is described in a Word/HTML/PDF
document

 Level 2: Semi-automated checking mechanism for
architecture enforcement

 Level 3: Fully automated checking mechanism

4/27/09

6

11

Why Architecture Enforcement?
 Checking mechanism to enforce Reference

Architecture

 Match Requirements (Architecture) to
Implementation (Code)

 Detect and prevent structural complexity

 Promotes consistency and modularity in the System

 Aids in Architecture, Design, and Code refactoring
efforts

12

Architecture Rules
 Business v. Architecture Rules

  Architecture rules are as important as business rules

 Code Quality By Design
  Unit tests, TDD & BDD only help with code quality from

functional requirements stand-point
  Need for a process to ensure code quality from design

stand-point

 Technical Credit
  Good Design, Testable and Integrated Code
  Code that complies with Architecture/Design Policies

4/27/09

7

13

Types of Enforcement
 Layered architecture and application module

dependencies

 API usage (internal and 3rd party)

 Coding Policies

 Code-Naming Conventions

 Design Patterns and Best Practices

14

Setup Types
  Static analysis

  Allows for easy visual representation
  Techniques

  AOP, AspectJ

  Tools
  Structure 101
  SonarJ
  Lattix

  Dynamic analysis
  Based on the program flow
  Rule-set usable at runtime
  Techniques: AspectJ/Spring AOP

4/27/09

8

15

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

16

Rule Categories
 Layered Architecture

 Separation Of Concerns

 Domain-Driven Design

  Infrastructure

 Miscellaneous

4/27/09

9

17

Rules - Layered Architecture
 Presentation layer should not use DAO classes

directly

 Service layer never calls web layer

 DAO (Persistence) layer depends on no other layer
except domain

18

Rules - Separation of Concerns
 No transaction management in DAO classes

 Only DAO's should reference javax.sql classes

 Only Controller classes are aware of Web/HTTP
objects

 Service layer should be transactional

 External systems can not access internal
implementation classes (*Impl classes)

4/27/09

10

19

Rules - Domain-Driven Design
 Service object creation via a Factory (i.e. no “new

Service()” code)

 No direct access to DAO’s except from Domain
classes

 Business service that fails with a concurrency
related failure can be retried

20

Rules - Infrastructure
 No direct use of API:

  Log4J or Commons Logging (use Framework Logger)
  JavaMail (use MailService component)

  FTP (use FileTransferService component)

 No System.out.println statement anywhere in the
code

4/27/09

11

21

Rules - Miscellaneous
 All primary key classes (*PK.java) should implement

Serializable interface

 All test classes should be named with the suffix
“Test”

22

Persistence
 Hibernate session close only allowed in EJB's and

Servlet Filters

 DAO's accessing DB Views use JDBC (no
Hibernate)

 Use SpringJdbcTemplate for JDBC data access

4/27/09

12

23

Other Domain Concerns
 Auditing

  Domain state change tracking

 Monitoring
  Aspects to implement MonitorMBean interface

  Expose Results as an MBean

  Publish results using RSS feeds

24

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

4/27/09

13

25

Approaches
 Code Inspections

 Architecture Reconstruction

 Model Driven Architecture (MDA)

 Code Generation

 Byte Code Instrumentation

 Enforcement Tools

 Aspect-oriented Programming (AOP)

26

Architecture Analysis Tools
 Macker

 ArchitectureRules

 Classycle

 PatternTesting

 Contract4J

 Structure 101, Lattix, SonarJ

4/27/09

14

27

Architecture Analysis Tools
 Structure 101

  Slicing / Rules

 SonarJ
  Logical architecture definition & Physical mapping of

architecture to Java code

 Lattix
  Dependency Structure Matrix showing the Desired vs. the

Realized architecture implementation

28

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

4/27/09

15

29

Aspect-oriented Programming
 Add behavior to objects in a non-obtrusive manner

through static and dynamic crosscutting

 Code cross-cutting concerns in separate modules
and apply them in a declarative way

30

AOP Use Cases
 Spring Framework Built-In Aspects:

  Transaction Management
  Security

 Custom Aspects:
  Profiling

  Caching
  Architecture Rules

  Contract Enforcement

4/27/09

16

31

AOP in Architecture Enforcement
 Provides the necessary abstraction to enforce rules

 Customized compile-time error or warning
messages

 Less intrusive

 Target application code is not modified in any form

 Rules can be turned on or off any time

32

Enforcement: Aspects or Tools?
 Question:

  AOP or Tools?

4/27/09

17

33

Enforcement: Aspects or Tools?
 Tools:

  +Better enforcement options

  -Licensing costs

 Aspects
  +More flexibility for customization
  -Relatively intrusive

  -Not backed by an architecture meta model

34

Enforcement: Aspects or Tools?
 Question:

  AOP or Tools?

 Answer:
  It depends..

  Choose the right tool to do the right job

4/27/09

18

35

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

36

Architecture Rules Enforcement
  IDE (Eclipse, AJDT)

 Build Process Changes (Ant, CruiseControl)

 RSS Feeds (Rome)

4/27/09

19

37

Sample Application
 Tools:

  Eclipse
  AspectJ

  AJDT

  Spring AOP

  Ant

38

Sample Application - Eclipse

4/27/09

20

39

Layered Architecture Rules
 Service classes should not depend on Application

layer classes

40

  DEMO

4/27/09

21

41

Domain-Driven Design Rules
 No direct access to DAO's except from Domain

classes (go through Domain or Repository objects)

42

Typical J2EE Architecture Model

4/27/09

22

43

Domain Driven Architecture

44

  DEMO

4/27/09

23

45

DDD Rules Demo 2
 Business service that fails with a concurrency

related failure can be retried
 Caching example

  Spring AOP and EHCache
  Requirement: To cache specific data (objects) using a

custom Annotation
  Annotation: @CacheEntity

46

  DEMO

4/27/09

24

47

Infrastructure Rules
 No direct use of API:

  Log4J or Commons Logging (use Framework Logger)

48

  DEMO

4/27/09

25

49

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

50

CI Process Changes
 Build process changes to include Architecture rules

task

 Part of build process (in Local and Integration
environments)

 Deviations are published nightly as RSS feeds

  Identified deviations are used in conducting design
and code reviews

4/27/09

26

51

Build Process Changes

52

Sample Application – Ant Build

4/27/09

27

53

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

54

Case Study
  Implementation Plan:

  Phase 1 (Day 1): Enable rules but not enforce them (yet)
  Phase 2 (Day 16): Enable rules and enforce only critical

Errors (No Warnings)

  Phase 3: Enable rules and enforce all deviations (Errors &
Warnings)

  Phase 4: Enable rules and enforce all Errors and
Warnings in all applications in the enterprise

4/27/09

28

55

Architecture Rules Aspects
 Open source Google project

  architecture-rules-aspects (http://code.google.com/p/
architecture-rules-aspects/)

 Future road-map:
  DSL to define architecture rules (e.g. Groovy)

  Define rules in a Rules Engine (JBossRules)

56

Implementation Road Map
 Publish rules along with Reference Architecture

(RA) and Standard Technology/Framework Stack

 Pick a pilot application to enforce architecture rules
as part of the build process (and Eclipse IDE)

  Incorporate architecture enforcement into other
applications

 Training/Mentoring as part of an on-going
Architecture Governance effort

4/27/09

29

57

Conclusions
 Make architecture rules part of build process to

detect deviations earlier in SDLC

 Use enforcement check results to improve
architecture/design/code (via refactoring efforts)

 Capture design patterns and best practices as policy
enforcement Aspects

 Refine & refactor enforcement rules

58

AOP Tools
 AJDT

 Spring AOP

 MaintainJ: Sequence Diagram Using AspectJ

 PointcutDoctor

 Jexin

4/27/09

30

59

References (1/2)
 Architecture Rules Aspects Google Project (

http://code.google.com/p/architecture-rules-aspects/)
 AspectJ In Action (2nd Edition)
 Building Software As Solid As The Pyramids

(Ramnivas Laddad & Alef Arendsen)
 Using Aspect-Oriented Programming to Enforce

Architecture (Paulo Merson)
 AOP In the Enterprise (Adrian Colyer)
 Aspects & policy injection - clean up your code
 Policy Injection Application Block

60

References (2/2)
 Structure 101
 SonarJ (http://www.hello2morrow.com)
 Lattix
 Contract4J (http://www.contract4j.org/contract4j)
 Macker (http://innig.net/macker/)
 Rome - RSS Feeds Framework (https://

rome.dev.java.net/)

4/27/09

31

61

Contact Information
 Domain-Driven Design and Enterprise Architecture

articles on InfoQ

  InfoQ website (http://www.infoq.com)

 E-Mail: srinipenchikala@gmail.com

 Blog: http://srinip2007.blogspot.com

62

  Q & A

4/27/09

32

63

Thank You
 Thank you for your attention

 Feedback survey

