
4/27/09

1

Architecture Rules Enforcement
and Governance Using Aspects

Srini Penchikala

SATURN 2009

2

About the Speaker
  Enterprise Architect

  Writer, Speaker, Editor (InfoQ)

  Detroit Java User Group Leader

  Working with Java since 1996, JEE (2000), SOA (2006),
& PowerPoint since Sep 2008

  Current: Agile Architectures, Domain-Driven Design,
Architecture Enforcement, Model Driven Development

  Future: Role of DSL's in Architecture Enforcement

4/27/09

2

3

Goals for this Presentation

  Overview of Reference Architecture (RA) and its
significance in EA

  How Aspects and AOP can help to enforce RA and
manage Architecture Governance

4

Format
  Interactive

 Demos

 Duration: ~60 minutes

 Q & A

 Prerequisite: Familiarity with AOP and Aspects

4/27/09

3

5

Before we start…

  How many currently have some kind of Reference
Architecture in place?

  How many actually use RA to enforce architecture?

6

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

4/27/09

4

7

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

8

Reference Architecture
 A high-level system design which consists of:

  description of system components
  definitions of relationships between components

  definitions of relationships between system components &
elements external to the system

4/27/09

5

9

Architecture Enforcement
 Architecture Rules:

  Rules (compile time as well as run time) used to assert
architecture.

 Architecture Governance:
  Construct an Architecture Contract to govern overall

implementation & deployment process.
  Perform appropriate governance functions while system is

being implemented and deployed.

  Ensure conformance with defined architecture by
implementation projects

10

Architecture Enforcement Maturity
Model
 Level 0: No RA

 Level 1: RA is described in a Word/HTML/PDF
document

 Level 2: Semi-automated checking mechanism for
architecture enforcement

 Level 3: Fully automated checking mechanism

4/27/09

6

11

Why Architecture Enforcement?
 Checking mechanism to enforce Reference

Architecture

 Match Requirements (Architecture) to
Implementation (Code)

 Detect and prevent structural complexity

 Promotes consistency and modularity in the System

 Aids in Architecture, Design, and Code refactoring
efforts

12

Architecture Rules
 Business v. Architecture Rules

  Architecture rules are as important as business rules

 Code Quality By Design
  Unit tests, TDD & BDD only help with code quality from

functional requirements stand-point
  Need for a process to ensure code quality from design

stand-point

 Technical Credit
  Good Design, Testable and Integrated Code
  Code that complies with Architecture/Design Policies

4/27/09

7

13

Types of Enforcement
 Layered architecture and application module

dependencies

 API usage (internal and 3rd party)

 Coding Policies

 Code-Naming Conventions

 Design Patterns and Best Practices

14

Setup Types
  Static analysis

  Allows for easy visual representation
  Techniques

  AOP, AspectJ

  Tools
  Structure 101
  SonarJ
  Lattix

  Dynamic analysis
  Based on the program flow
  Rule-set usable at runtime
  Techniques: AspectJ/Spring AOP

4/27/09

8

15

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

16

Rule Categories
 Layered Architecture

 Separation Of Concerns

 Domain-Driven Design

  Infrastructure

 Miscellaneous

4/27/09

9

17

Rules - Layered Architecture
 Presentation layer should not use DAO classes

directly

 Service layer never calls web layer

 DAO (Persistence) layer depends on no other layer
except domain

18

Rules - Separation of Concerns
 No transaction management in DAO classes

 Only DAO's should reference javax.sql classes

 Only Controller classes are aware of Web/HTTP
objects

 Service layer should be transactional

 External systems can not access internal
implementation classes (*Impl classes)

4/27/09

10

19

Rules - Domain-Driven Design
 Service object creation via a Factory (i.e. no “new

Service()” code)

 No direct access to DAO’s except from Domain
classes

 Business service that fails with a concurrency
related failure can be retried

20

Rules - Infrastructure
 No direct use of API:

  Log4J or Commons Logging (use Framework Logger)
  JavaMail (use MailService component)

  FTP (use FileTransferService component)

 No System.out.println statement anywhere in the
code

4/27/09

11

21

Rules - Miscellaneous
 All primary key classes (*PK.java) should implement

Serializable interface

 All test classes should be named with the suffix
“Test”

22

Persistence
 Hibernate session close only allowed in EJB's and

Servlet Filters

 DAO's accessing DB Views use JDBC (no
Hibernate)

 Use SpringJdbcTemplate for JDBC data access

4/27/09

12

23

Other Domain Concerns
 Auditing

  Domain state change tracking

 Monitoring
  Aspects to implement MonitorMBean interface

  Expose Results as an MBean

  Publish results using RSS feeds

24

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

4/27/09

13

25

Approaches
 Code Inspections

 Architecture Reconstruction

 Model Driven Architecture (MDA)

 Code Generation

 Byte Code Instrumentation

 Enforcement Tools

 Aspect-oriented Programming (AOP)

26

Architecture Analysis Tools
 Macker

 ArchitectureRules

 Classycle

 PatternTesting

 Contract4J

 Structure 101, Lattix, SonarJ

4/27/09

14

27

Architecture Analysis Tools
 Structure 101

  Slicing / Rules

 SonarJ
  Logical architecture definition & Physical mapping of

architecture to Java code

 Lattix
  Dependency Structure Matrix showing the Desired vs. the

Realized architecture implementation

28

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

4/27/09

15

29

Aspect-oriented Programming
 Add behavior to objects in a non-obtrusive manner

through static and dynamic crosscutting

 Code cross-cutting concerns in separate modules
and apply them in a declarative way

30

AOP Use Cases
 Spring Framework Built-In Aspects:

  Transaction Management
  Security

 Custom Aspects:
  Profiling

  Caching
  Architecture Rules

  Contract Enforcement

4/27/09

16

31

AOP in Architecture Enforcement
 Provides the necessary abstraction to enforce rules

 Customized compile-time error or warning
messages

 Less intrusive

 Target application code is not modified in any form

 Rules can be turned on or off any time

32

Enforcement: Aspects or Tools?
 Question:

  AOP or Tools?

4/27/09

17

33

Enforcement: Aspects or Tools?
 Tools:

  +Better enforcement options

  -Licensing costs

 Aspects
  +More flexibility for customization
  -Relatively intrusive

  -Not backed by an architecture meta model

34

Enforcement: Aspects or Tools?
 Question:

  AOP or Tools?

 Answer:
  It depends..

  Choose the right tool to do the right job

4/27/09

18

35

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

36

Architecture Rules Enforcement
  IDE (Eclipse, AJDT)

 Build Process Changes (Ant, CruiseControl)

 RSS Feeds (Rome)

4/27/09

19

37

Sample Application
 Tools:

  Eclipse
  AspectJ

  AJDT

  Spring AOP

  Ant

38

Sample Application - Eclipse

4/27/09

20

39

Layered Architecture Rules
 Service classes should not depend on Application

layer classes

40

  DEMO

4/27/09

21

41

Domain-Driven Design Rules
 No direct access to DAO's except from Domain

classes (go through Domain or Repository objects)

42

Typical J2EE Architecture Model

4/27/09

22

43

Domain Driven Architecture

44

  DEMO

4/27/09

23

45

DDD Rules Demo 2
 Business service that fails with a concurrency

related failure can be retried
 Caching example

  Spring AOP and EHCache
  Requirement: To cache specific data (objects) using a

custom Annotation
  Annotation: @CacheEntity

46

  DEMO

4/27/09

24

47

Infrastructure Rules
 No direct use of API:

  Log4J or Commons Logging (use Framework Logger)

48

  DEMO

4/27/09

25

49

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

50

CI Process Changes
 Build process changes to include Architecture rules

task

 Part of build process (in Local and Integration
environments)

 Deviations are published nightly as RSS feeds

  Identified deviations are used in conducting design
and code reviews

4/27/09

26

51

Build Process Changes

52

Sample Application – Ant Build

4/27/09

27

53

Agenda
 Reference Architecture & Enforcement

 Architecture Rules Categories

 Architecture Enforcement Approaches

 Aspect-oriented Programming

 Rules Demo(s)

 CI Process Changes

 Case Study

 Architecture Rules Aspects - Open Source Project

54

Case Study
  Implementation Plan:

  Phase 1 (Day 1): Enable rules but not enforce them (yet)
  Phase 2 (Day 16): Enable rules and enforce only critical

Errors (No Warnings)

  Phase 3: Enable rules and enforce all deviations (Errors &
Warnings)

  Phase 4: Enable rules and enforce all Errors and
Warnings in all applications in the enterprise

4/27/09

28

55

Architecture Rules Aspects
 Open source Google project

  architecture-rules-aspects (http://code.google.com/p/
architecture-rules-aspects/)

 Future road-map:
  DSL to define architecture rules (e.g. Groovy)

  Define rules in a Rules Engine (JBossRules)

56

Implementation Road Map
 Publish rules along with Reference Architecture

(RA) and Standard Technology/Framework Stack

 Pick a pilot application to enforce architecture rules
as part of the build process (and Eclipse IDE)

  Incorporate architecture enforcement into other
applications

 Training/Mentoring as part of an on-going
Architecture Governance effort

4/27/09

29

57

Conclusions
 Make architecture rules part of build process to

detect deviations earlier in SDLC

 Use enforcement check results to improve
architecture/design/code (via refactoring efforts)

 Capture design patterns and best practices as policy
enforcement Aspects

 Refine & refactor enforcement rules

58

AOP Tools
 AJDT

 Spring AOP

 MaintainJ: Sequence Diagram Using AspectJ

 PointcutDoctor

 Jexin

4/27/09

30

59

References (1/2)
 Architecture Rules Aspects Google Project (

http://code.google.com/p/architecture-rules-aspects/)
 AspectJ In Action (2nd Edition)
 Building Software As Solid As The Pyramids

(Ramnivas Laddad & Alef Arendsen)
 Using Aspect-Oriented Programming to Enforce

Architecture (Paulo Merson)
 AOP In the Enterprise (Adrian Colyer)
 Aspects & policy injection - clean up your code
 Policy Injection Application Block

60

References (2/2)
 Structure 101
 SonarJ (http://www.hello2morrow.com)
 Lattix
 Contract4J (http://www.contract4j.org/contract4j)
 Macker (http://innig.net/macker/)
 Rome - RSS Feeds Framework (https://

rome.dev.java.net/)

4/27/09

31

61

Contact Information
 Domain-Driven Design and Enterprise Architecture

articles on InfoQ

  InfoQ website (http://www.infoq.com)

 E-Mail: srinipenchikala@gmail.com

 Blog: http://srinip2007.blogspot.com

62

  Q & A

4/27/09

32

63

Thank You
 Thank you for your attention

 Feedback survey

