
1SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SEI Observations and
Reference Model for
Software Integration Labs

Robert V. Binder

July 11, 2018

2SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision,
unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use
and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is
required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0843

3SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Overview

• What should a Software Integration Lab (SIL) do?

• SIL Reference Model

• SIL configurations observed at SEI customers

• Automotive best practices

• Test automation levels and effectiveness

• Testing productivity versus effectiveness

4SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

US Army SIL for M153 CROWS System

http://www.ardec.army.mil/armamentsec/facilities/crows.aspx
Images from the web site – SEI did not visit this lab.

http://www.ardec.army.mil/armamentsec/facilities/crows.aspx

5SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Reference Model: the System Under Test and its Environment

Comp Hardware
Run Time OS

External
System

User
Interface

Environment

Software
Item

SUT

Actuators

Sensors

External
Users

Friendly
Actors

Hostile
Actors

Plant

SUT
Users

6SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Goals
Evaluate interoperability and stability of:

• System Under Test (SUT) software items (SI)
• SUT and run-time stack interaction
• SUT and sensors, actuators, peripherals
• SUT and external systems

Support testing of partial SUT configurations, including falsework
Achieve realistic environmental conditions
Check completeness with respect to requirements and architecture
Support development, QT, DT, and OT
Support rapid cycle Devops

What should a Software Integration Lab do?

7SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Non-goals (typical)
White-box software evaluation (maintainability, structure, etc.)
Comprehensive functional testing of SI, OS, or HW
Comprehensive functional testing of SUT
Comprehensive failure/restart/recovery testing
SUT reliability or performance test (MTBF, response time, utilization, etc.)
SUT usability or effectiveness testing, user documentation evaluation
Long duration soak test
Safety testing
Testing physical aspects of mechanical, electrical, or RF components

What should a Software Integration Lab do?

8SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Strategy: Testing System
The Testing System is a software-defined environment purpose-built to achieve
testing goals for the SUT and its environment
It should be funded, developed, staffed, and managed as a first class sustainment
asset
Maximal test automation

• Test asset management system, all test code under CM control
• Model-based test generation
• Test execution system(s)
• Test objects drive adapter objects that drive falsework and real SUT interfaces
• User-interface test suites follow Feature-action-control pattern
• Seamless interleaving of manual and traditional test code/procedures

What should a Software Integration Lab do?

9SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Strategy: Test Approach
Design realistic test scenarios to achieve interaction coverage

• Exercise all modes (normal and failure), mode transitions, and duty cycles
• Exercise at least one failure of each sensed/managed mechanical, electrical, or

RF interface
• Verify datastore integrity at entry/exit of each mode

Calibrate test artifacts
• Appropriate level of rigor for test artifacts
• Test artifacts should be reusable
• Test artifacts must be maintainable

Living antecedent traceability

What should a Software Integration Lab do?

10SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Strategy: Test Coverage
Test at least once:

• Every externally triggered interaction
• Every internally triggered interaction (e.g., timer)
• Every requirement for an interaction and its observable effects
• Each mode and transition, including failure modes

Evaluate interaction coverage (end-to-end paths)
Test at least pair-wise combinations of inputs, configurations, settings, etc.
Don’t rely on stale regression testing

What should a Software Integration Lab do?

11SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Strategy: Testing System’s Network
Testing System’s network is isolated from SUT network
SUT network(s) provide passive “Tee” for injection and monitoring
Configuration-as-Code and containerization stage both Testing System and SUT
Staging the Testing System for a classified SUT

• Testing System development
- Development impractical without public internet connectivity
- Testing System developed in unclassified environment
- Falsework allows tests to run in unclassified environment
- One-way data diode or air gap staging to classified Testing System
- Install Testing System container in classified environment

• SUT container installed into classified environment and tested

What should a Software Integration Lab do?

12SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Strategy: Process
Produce specific, measured, actionable, realistic, and timely evaluation results
Follow quality management standard ISO/IEC 17025 General requirements for the
competence of testing and calibration laboratories

Support upstream and downstream activities
• Provide design-for-testability guidance and entry requirements to suppliers and

developers
• Operate a SIL instance dedicated to developer continuous integration (CI)
• Gate incoming candidates: Accept new SUT version only after upstream CI

passes, smoke test passes; test readiness review acceptance
• Continuously evaluate and improve downstream handoff
• Track all integration bug reports; use to evaluate/improve test effectiveness

What should a Software Integration Lab do?

13SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Reference Model: the System Under Test and its Environment

Comp Hardware
Run Time OS

External
System

User
Interface

Environment

Software
Item

SUT

Actuators

Sensors

External
Users

Friendly
Actors

Hostile
Actors

Plant

SUT
Users

14SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Reference Model: Testing System Architecture

Test Asset
Management

Test
Generation

Test
Execution

Test
Evaluation

Anomaly
Reporting

Test
ModelingAntecedents

Configuration
Management

Devops
Staging

Testing System
SUT

Point of
Control and
Observation
(PCO)

Environment

15SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Reference Model: Adapter Framework for all PCOs

Abstract
Interface

Null (SW)

Mock (SW)

Simulator
(SW/HW)

Emulator
(HW)

Real controlled

Real uncontrolled

Test Execution
Adapter Object

Test Object

Adapters decouple test
objects from physical
interfaces so same test
suites can run on multiple
SUT/SIL configurations

SUT

Environment

SUT Physical
Interface

Setup

SUT Config

16SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

SIL Reference Model: Devops for the Testing System
Testing System

Release Candidate

Developer
SIL Instance

Continuous
Integration
Tool Chain

Internet

TS

SUT

SUT Release Candidate
SIL Instance

TS

SUT

Secure
SIL Instance

TS

SUT

Staging

Staging Staging

Data Diode

17SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Profiled Software Testing Labs

Composite of multiple SEI engagements

• 25 testing labs

• Data collected for different projects by
interviews and visits

• ~80% developing or sustaining weapon
systems

• ~20% developing or sustaining enterprise
systems

• Includes experience of standing up a SIL
at SEI for the SOCOM TALOS program

Notable

• Some SILs also used for training

• Almost no effective shift-left

• Many challenges for development and
validation of simulation falsework

• Upstream testing often superficial

• No explicit design-for-testability

• High friction moving unclass to class

• Automated SILs have highest defect
removal efficiency

18SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Profiled Lab Characteristics

App
Type

Embedded

C2

EIS

ISR

Effectiveness

Test Run
Days

Number of
Tests

%
Automated

Stage

Developer

QT

DT

OT

Configuration

CI/CD?

Component

Environment

Sim?

HIL?

Sim?

HIL?

Scope LRU

System

SI

19SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Application Type and Stage Used

0

2

4

6

8

10

12

14

16

18

C4I C2 ISR EIS Embedded
0
1
2
3
4
5
6
7
8

System
Dev

LRU DT SI Dev LRU QT System
QT

System
DT

Profiled SILs support mostly
embedded apps …

… during QT and DT

20SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Configuration and Automation

0

1

2

3

4

5

6

7

8

4 Elements 3 Elements Real only 2 Element 1 Element

Number and type of falseworks

0

1

2

3

4

5

6

7

8

9

25% 35% 20% 50% 0% 100%

Percent of tests that are automated

1/4 use both Sim + HIL for
LRU integration

1/3 use automated regression
suites, 1/3 have no automation

21SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Test Automation Levels
Ad Hoc
Manual

Repeatable
Manual

Naive
Automation

Layered
Architecture
Automation

Model-based
Automation

Main Benefits

Concerns

Risk Reduction

Tech Baseline
Ownership via

Test Design

Usability
Omissions

Lowest cost

Coverage?
No repeat

Inconsistent

Low

None

Rqmt checkoff
Repeatable

Low cost

Low-Med

Some

Superficial
Long test time

Rqmt checkoff
Repeatable

Run on demand

Low-Med

Some

Superficial
Brittle

High maint $

Rqmt checkoff
Repeatable

Run on demand
Lower maint $

Low-Med

Some

Superficial
SW eng stds

Maintain model
Generate tests
Deep coverage
Lowest $/test

Staffing/Skilling

Med-High

Deep

Layered, model-based test automation
achieves highest ROI and effectiveness

22SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Automation Levels at Profiled SILs

No Automation
32%

Naïve Automation
52%

Layered Automation
12%

Model-based
Automation

4%Good news: All
labs follow regular
testing process;
none ad hoc or skip

23SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Manual Interaction
No Assist

Manual Interaction
Software Assisted

Automated
Test Case Execution

LRU Simulated or
Real Hardware-in-

the-Loop
150

2200
500
200

LRU Simulated 390
70

100, 100
60

Deployed System
(all Real)

50
20

50
50

Profiled Labs Productivity Comparison
Test Execution Automation

Fa
ls

ew
or

k/
R

ea
l C

on
fig

ur
at

io
n

(nnn): Estimated average test points evaluated per day during a test cycle

24SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Best Practices: Testing Strategies

Profiled Labs
Best Practices

Automotive
Best Practices

Coverage: every requirement at least once 

Model-based Test Generation 

Test Asset Management 

Profile-based Reliability Testing 

Combinatorial Design 

Data-driven promotion/acceptance 

25SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Best Practices: Testing System Configuration

Profiled Labs
Best Practices

Automotive
Best Practices

SI build with controllable adapters 

Continuous Integration with LRU simulation 

LRU simulation  

LRU simulation + Real LRU  

Testable full-up chassis 

Manual testing on system  

Manual testing on system, telemetry/capture 

Field monitoring 

26SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Best Practices: Test Execution

Profiled Labs
Best Practices

Automotive
Best Practices

Integrated component simulation/emulation  

Automated test harness  

User Interface automation  

Network traffic monitoring  

Controllable fault injection  

27SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Backup

28SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Falsework

Null Stub
Mock

Simulation

Emulation

“Falsework consists
of temporary structures used
in construction to support
spanning or arched structures
in order to hold the
component in place until its
construction is sufficiently
advanced to support itself.”

Presenter
Presentation Notes
This term is used in the US and throughout the world.

https://en.wikipedia.org/wiki/Falsework.

Image: https://upload.wikimedia.org/wikipedia/commons/thumb/2/2c/SFOBBESR-SASFalsework-1433.jpg/1280px-SFOBBESR-SASFalsework-1433.jpg

29SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Falsework for a SIL

Purpose Role in a SIL

Null Placeholder SW May be part of SUT. Limits coverage,
placeholder for unavailable interface.

Mock Implement subset of SI behavior. SW May be part of SUT. Limits coverage,
placeholder for unavailable interface.

Simulation Mimic selected behaviors of an SI, sensor,
actuator, external system, or user.

SW Use a simulator to generate input or
accept output.

Emulation Replicate all behaviors of a component,
sensor, actuator, or external system with
hard real-time constraints.

SW/
HW

Use a HIL emulator to generate
actuator input or sensor output using
high speed digital devices.

In software testing, falsework refers to stubs, mocks, fakes, “Service
Virtualization,” generated or programmed simulations, and high fidelity
hardware-based emulation.

https://msdn.microsoft.com/en-us/library/hh549175.aspx

30SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Interface Coverage Matrix

Each cell represents a
possible interaction between
actor types
• All cells are candidates

because any cell can
initiate an interaction

• Table shows a minimal
subset for a typical
system

• Some systems may have
only a few interactions;
some have all

SI RTS HW XS

SI    

RTS 

HW  

XS 

The structure of the system
must be mapped to be sure
interactions are covered.
Some good sources are:
• Interface Control

Documents (ICDs)
• Sequence diagrams
• Code analyzers like

SciTools Understand
• Runtime logs and traffic
• User documentation

https://scitools.com/

31SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

The Test Automation Tool Chain

There are many hundreds of
COTS, FOSS, and GOTS

software testing tools

Presenter
Presentation Notes
http://www.cheapism.com/lowes-or-home-depot/

32SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Testing scope, tooling, focus, lanes

Component,
SI,
Subsystem

CTR
SQT

PO
FAT

DTO OTO



  

  

Functions

Use cases,
Performance,
Mission threads

Features,
User stories

Scope FocusExample Tool

Junit
SonarCube

Selenium
SOAP UI

System,
SoS

TestStand
Jmeter

Developer,
Unit,
SI

33SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

GUI

Embedded
Control

Systems

API

Enterprise
Information

Systems

Windows

*nix
RTOS

Application
Domain

Interface
Supported

Platforms
Supported

Function
Performance

Security
...

Function
Performance

Security
...

Function
Performance

Security
...

Function
Performance

Security
...

Tools are specialized for:

• Testing purpose

• Target interface, IDE,
programming language

• Application domain:
transaction processing,
embedded, mobile app…

• Runtime stack(s) of target
and tool

Which testing tool(s) is right for your job(s)?

Often dozens of
tools in each niche

34SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Test Automation Reference Architecture: Java/Cloud stack

Bug Tracking
Test Asset Management

Application Life Cycle Management

Requirements Management
Model-based Systems Engineering

Configuration Management
Continuous Integration
Continuous Deployment

Load Generation
Performance Monitor

Network Capture

BDD/ATDD Support
Combinatorial Design
Model-based Testing

Dev Test Framework
Code Coverage Analyzer

Static Analyzer
Mutation Testing

Fault Injection

FalseWork

Company, product, and service names used in this
slide are for illustrative purposes only. All trademarks
and registered trademarks are the property of their
respective owners.

Italics indicate
advanced
capability

Test Runner
Web UI Harness

Dot Net UI Harness
Smartphone Harness

SOA/API Harness

Representative tools are
not recommendations.

Many others for each slot

JBehave
ACTS

Smartesting

Junit
Klocwork

Fortify
Pit

Byteman

Maven
Selenium
Ranorex
Appium

TestMaker
Silk Performer

Nagios
WireShark

Virtualize

35SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Test Automation Reference Architecture: C++/RTOS stack

Bug Tracking
Test Asset Management

Application Life Cycle Management

Requirements Management
Model-based Systems Engineering

Configuration Management
Continuous Integration
Continuous Deployment

Load Generation
Performance Monitor

Network Capture

BDD/ATDD Support
Combinatorial Design
Model-based Testing CANoe

nmon
Link 16 Diagnostic Dev Test Framework

Code Coverage Analyzer
Static Analyzer

Mutation Testing
Fault Injection

FalseWork

MATLAB

SpecFlow
ACTS

Matelo

GoogleTest
VectorCast
FlawFinder
Insure++

FITH

Company, product, and service names used in this
slide are for illustrative purposes only. All trademarks
and registered trademarks are the property of their
respective owners.

Italics indicate
advanced
capability

Test Runner
Web UI Harness

Dot Net UI Harness
Smartphone Harness

SOA/API Harness

TestStand
Squish

--
--

SOAP UI

Representative tools are
not recommendations.

Many others for each slot

36SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Acronyms

API Application Programming Interface MTBF Mean time between failures
CI Continuous Integration OS Operating System

CM Configuration Management OT Operational Testing
COTS Commercial off the Shelf OTO Operational Testing Organization
CPU Computer Processor Unit QT Qualification Testing
DT Developmental Testing RCA Root Cause Analysis

DTO Developmental Testing Organization RF Radio Frequency
FOSS Free open source software RTOS Real-time operating system
FQT Factory Qualification Test SI Software Item

GOTS Government off the shelf SIL Software Integration Lab
GUI Graphic User Interface SoS System of Systems
HIL Hardware in the Loop SQT System/Software Qualification Test
HW Hardware SUT System Under Test
ICD Interface Control Document SW Software
IDE Interactive Development Environment TS Testing System
LRU Line Replaceable Unit UI User Interface
MBT Model-based Testing

37SEI Observations and Reference Model for Software Integration Labs
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution

Contact Information

Organization
Carnegie Mellon University
Software Engineering Institute
Client Technical Services Division

Robert Binder
rvbinder@sei.cmu.edu
+1 412-268-1549

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612, USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

mailto:rvbinder@sei.cmu.edu

	SEI Observations and Reference Model for�Software Integration Labs�
	Notices
	Overview
	US Army SIL for M153 CROWS System
	SIL Reference Model: the System Under Test and its Environment
	What should a Software Integration Lab do?
	What should a Software Integration Lab do?
	What should a Software Integration Lab do?
	What should a Software Integration Lab do?
	What should a Software Integration Lab do?
	What should a Software Integration Lab do?
	What should a Software Integration Lab do?
	SIL Reference Model: the System Under Test and its Environment
	SIL Reference Model: Testing System Architecture
	SIL Reference Model: Adapter Framework for all PCOs
	SIL Reference Model: Devops for the Testing System
	Profiled Software Testing Labs
	Profiled Lab Characteristics
	Application Type and Stage Used
	Configuration and Automation
	Test Automation Levels
	Automation Levels at Profiled SILs
	Profiled Labs Productivity Comparison
	Best Practices: Testing Strategies�
	Best Practices: Testing System Configuration
	Best Practices: Test Execution
	Slide Number 27
	Falsework
	Falsework for a SIL
	Interface Coverage Matrix
	 The Test Automation Tool Chain
	Testing scope, tooling, focus, lanes
	Which testing tool(s) is right for your job(s)?
	Test Automation Reference Architecture: Java/Cloud stack�
	Test Automation Reference Architecture: C++/RTOS stack�
	Acronyms
	Contact Information

