

A Cost Model and Tool to Support Quality Economic Trade-off Decisions

William Nichols

Software Engineering Institute Pittsburgh, PA 15213

May 2011

Software Engineering Institute | Carnegie Mellon

© 2011 Carnegie Mellon University

From the Boehm and Basili Top 10 List

Software Defect Recduction Top 10 List, IEEE Software, January 2001

- Finding and fixing a software problem after delivery is often 100 times more expensive than finding and fixing it during the requirements and design phase.
- About 80 percent of avoidable rework comes from 20 percent of the defects.
- Peer reviews catch 60 percent of the defects.
- Disciplined personal practices can reduce defect introduction rates by up to 75 percent.
- All other things being equal, it costs 50 percent more per source instruction to develop high-dependability software products than to develop lowdepend-ability software products. However, the investment is more than worth it if the project involves significant operations and maintenance costs.

What Have We Learned?

We still hear

"We had to release yesterday. We'll take the shortcut and polish it later."

What do you rush?

- Completing test cases? Reduced test coverage? •
- **Designs? Design inspections?**
- Coding? Code inspections? •

Peer review might improve quality, but will delay release, right?

Can you really buy time in the short run by trading-off the long run?

Debt or Liability?

We've all heard "Quality is free." Do you believe it?

How do you make the right trade-off for the short term and long term?

How do you know and how do you convince others?

Start with "What does done look like?"

Does it have to be unit tested?

Does it have to get through an integration and system test?

Does it have to pass a user acceptance test?

How long will test take? What is the model?

How long it takes and what it costs to get through these activities depends the quality of the product going into test.

Software Engineering Institute | Carn

Carnegie Mellon

Defect Injection-Filter Model

Similar to Jones "Tank and Pipe." Simplifies assumptions found in Boehm/Chulani COQUALMO.

Software Engineering Institute

Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

5

Defects Require Time to Find and Fix

Software Engineering Institute Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

Quality Process Measures

The TSP uses quality measures for planning and tracking.

- 1. Defect injection rates [Def/hr/ and removal yields [% removed]
- 2. Defect density (defects found and present at various stages and size)
- 3. Review/inspection rates [LOC/hr]

Software Engineering Institute

Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

7

Parameters

Phase Injection Rate [defects/hr]

Phase Effort Distribution [%] total time

Size [LOC]

Production Rate (construction phase) [LOC/hr]

Phase Removal Yield [% removed]

Zero Defect Test time [hr]

Phase "Find and Fix" time [hr/defect]

Review/Inspection Rate [LOC/hr]

Make the Theoretical Concrete

Do you achieve your goals?

- How much functionality do you want to deliver?
- What are the non-functional targets? (performance, security...)
- What is your desired schedule?
- How many defects do you expect the user to find?

Build the model.

Use real data.

Visualize the result.

Software Engineering Institute

Control Panel	Rate [LOC/hr	Yield	Yield	# Insp	Effort
Desian Review	200	50.0%	(i0iai)	0	0.0
Design Inspection	200	50.0%	0.0%	0	0.0
Code Review	200	50.0%	0.0%	0	0.0
Code Inspection	200	50.0%	0.0%	0	0.0

Defect Density Phase Profile

Control Panel	Rate [LOC/hr	Yield	Yield	# Insp	Effort
	1	(per insp)	(total)		[hr]
Design Review	200	50.0%	0.0%	(1)	0.0
Design Inspection	200	50.0%	0.0%	Ō	0.0
Code Review	200	50.0%	0.0%	0	0.0
Code Inspection	200	50.0%	0.0%	0	0.0

Defect Density Phase Profile

Control Panel	Rate [LOC/hr	Yield	Yield	# Insp	Effort
		(per insp)	(total)		[hr]
Design Review	200	50.0%	0.0%	1	0.0
Design Inspection	200	50.0%	0.0%	0	0.0
Code Review	200	50.0%	0.0%	(1)	0.0
Code Inspection	200	50.0%	0.0%	Ō	0.0

Defect Density Phase Profile

Control Panel	Rate [LOC/hr	Yield	Yield	# Insp	Effort
	1	(per insp)	(total)		[hr]
Design Review	200	50.0%	0.0%	1	0.0
Design Inspection	200	50.0%	0.0%	(1)	0.0
Code Review	200	50.0%	0.0%	1	0.0
Code Inspection	200	50.0%	0.0%	0	0.0

Defect Density Phase Profile

Control Panel	Rate [LOC/hr	Yield	Yield	# Insp	Effort
Design Deview	200	(per insp)	(total)		
Design Review	200		0.0%		0.0
Design Inspection	200	50.0%	0.0%	1	0.0
Code Review	200	50.0%	0.0%	1	0.0
Code Inspection	200	50.0%	0.0%	(1)	0.0

Defect Density Phase Profile

Control Panel	Rate [LOC/hr	Yield	Yield	# Insp	Effort
		(per insp)	(total)		[hr]
Design Review	200	50.0%	0.0%	1	0.0
Design Inspection	200	50.0%	0.0%	1	0.0
Code Review	200	50.0%	0.0%	1	0.0
Code Inspection	200	50.0%	0.0%	(2)	0.0

Defect Density Phase Profile

Control Panel	Rate [LOC/hr	Yield	Yield	# Insp	Effort
Desian Review	200	(per insp) 50.0%	(101al) 0.0%	1	0.0
Design Inspection	200	50.0%	0.0%	1	0.0
Code Review	200 (70.0%	0.0%	1	0.0
Code Inspection	200 \	70.0%	0.0%	2	0.0

Defect Density Phase Profile

The "quality is free" point depends on your personal parameters.

In Construction Through Test

When you hear the claim,

we have to take a short cut to save time

"we'll deal with consequences later..."

Software Engineering Institute

...Respond with, "Build code, not liability. Doing it right is faster and cheaper."

The "Long Run" is already here! Deal with it!

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

Carnegie Mellon

Contact Information

William Nichols – wrn@sei.cmu.edu

TSP Symposium 2011 September 20-22, 2011

Atlanta, GA

http://www.sei.cmu.edu/tsp/symposium/

Additional Material

Software Engineering Institute Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

20

Implicitly Use Intertemporal equity exchang theorem

Software Engineering Institute

Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

Control Panel	Rate	Yield	Yield	# Insp	Effort
	[LOC/hr	(nor inon)	(total)		[br]
		(per insp)	(ioiai)		[nr]
Design Review	200	50.0%	0.0%	1	0.0
Design Inspection	200	50.0%	0.0%	1	0.0
Code Review	200	70.0%	0.0%	1	0.0
Code Inspection	200	70.0%	0.0%	2	0.0

()

Defect Density Phase Profile

Software Engineering Institute | Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

Planning Effort and Defects

Plan and Actual Effort for Components

Software Engineering Institute

Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

24

Leading Lagging VS. Indicators

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

Software Engineering Best Practices,

C. Jones, 2010

Software Engineering Institute

Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

You Don't Want to Be **This Person**

Software Engineering Institute | Carnegie Mellon

Quality Model Nichols MTD Workshop Honolulu, May 2011 © 2011 Carnegie Mellon University

27