

Anomaly Detection in Bipartite Networks

Mohammed Eslami, Ph.D George Zheng, Hamed Eramian, Georgiy Levchuk

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Goal: Formulate cyber logs as bipartite graphs and an an analytical workflow that use graph features to highlight events of interest to a cyber analyst.

- Overview of Network Defense
- Cyber Data Represented as Bipartite Graphs
- Graph Analytical Components, Features, and Workflow for Cyber Security
- Scalability and Examples
- Conclusion/Next Steps

The Challenge of Network Defense

Rapid identification of network anomalies in billions of records across a heterogeneous logs.

Enterprise Netflow and log data:

- 12 billion events per day,
- 1 TB per day of communications
- >60,000 employees,
- >570,000 users

Agency HO Homeworker with VPN client software INTERNET Homeworker Teleworker with 94 US locations; with VPN router VPN client software Bases in 130 countries Wireless VPN client VPN = Virtual Private Network Clustering Graphs Sequence

Moving beyond State of the Art:

Rule-based signatures \rightarrow Adaptive behavior detection Stateless single IP analyses \rightarrow Context based decisions Manual analysis \rightarrow Guided automation

Source: Deason, L. et. al. Scalable Temporal Analytics to Detect Automation and Coordination. Flocon 2017

The Challenge of Network Defense

Rapid identification of network anomalies in billions of records across a heterogeneous logs.

Types of Bipartite Graphs from Enterprise Networks

Bipartite graphs, graphs that have edges only between two distinct entity types, provide an opportunity to capture the relationships between entities within and across types but pose a unique set of challenges in their storage, scalable analysis, and interpretability.

IP-IP Graphs

Netflow records – edges only between internal/external IPs

Client-Server Graphs

DNS, HTTP, SMTP, etc. logs – edges only between client IP and server IP

Bipartite Graph Analysis for Enterprise Scale Network Defense

Analytical suite infers relationships between similar entities, scales to billions of records, and provides rapid situational awareness to SOC analyst.

Traditional Graph Projections

1

Nuances introduced by different graph weights and different destination nodes are ignored

Asymmetric similarity measure can capture difference in usage of uncommon servers between clients

Directed Graph Projections

Client B

~20

Analytics: Community Detection

Identify communities within a network that are more connected to each other than other parts of the network.

$$\Delta Q = \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m}\right)^2\right] - \left[\frac{\sum_{in} - \left(\frac{\sum_{tot}}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2\right] + \left(\frac{k_i}{2m}\right)^2\right] + \left(\frac{k_i}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2 -$$

- Σ_{in} is the sum of the weights of the links inside C
- Σ_{tot} is the sum of the weights of the links incident to nodes in C
- k_i is the sum of the weights of the links incident to node i
- k_{i,in} is the sum of the weights of the links from *i* to nodes in C
- *m* is the sum of the weights of all the links in the network.

Reference: Blondel, V. et al. *Fast* unfolding of communities in large networks, 2008

Graph Feature	Cyber Story	
Raw Degree	# of requests made, # of services used,	
Raw Weighted Degree	Amount I'm using a specific service	
Projected Degree	# of entities that I think I am similar to because we use a common service	
Projected Community Size	# of entities I am actually similar to	
Projected Page Rank	My "significance" as compared to other entities (ex. Admins will use more services than clients)	

Cyber Use Case to Graph Feature Mapping

Data Type	Cyber Use Case Description	Features
User → Service	Infer user roles	Admins = High projected degree, community size, and page rank Non-admins = High projected degree but small community size and page-rank
Client → Server	Infer similarities between groups of clients	Typical Client Systems = High community size, projected degree, and low page rank
Internal IP → External IP Identifying firewalls, VPNs, or other network access points from flow data		Firewalls = High raw degree, weighted degree, projected degree, community size, and page rank VPNs = High raw degree, weighted degree, projected degree, but small community size, and page rank

Graph Analytic Workflow

Modularization and integration identifies cyber use cases from graph feature mappings and also provides flexibility to identify anomalies within and across derived communities.

Scaling Directional Graph Projections

(d)

Message passing algorithms on graph data structure allows for custom asymmetric similarity measure and scales to O(e). {A:1,B:1,C:1} Aggregate {{A:1,B:1,C:1},{A:1,B:1, Collect messages from C:1,D:1}} neighbors with Source-{{B:1}, edge {B:1} Destination {A:1,B:1,C:1},{A:1,B:1,C:1, properties D:1}} {A:1,B:1,C:1, {{A:1,B:1,C:1,D:1}, D:1} {A:1,B:1,C:1}} {D:1} {{D:1}, {A:1,B:1,C:1,D:1}} (c) (a) (b) {B:2,C:2,D:1} Reduce by Key the Create directional **Properties and Filter** projection graph from {A:2,C:2,D:1} Nodes and Their Destination Node 0.5 1.0 Names Properties 0.67 1.0 1.0 {A:2,B:2,D:1} 0.5 {A:1,B:1,C:1} 0.67 0.33

(e)

Technology Base

45x Dell servers, 17.28 TB RAM, and 2.304 PB HDFS Storage

Use Case: Netflow from Edge of Network

Client-Server DNS Graph

Client Graph Projection colored by anomaly score

Explainable features highlight most anomalous client

0.0020 5 0.0015 0.0010 0.0005

Anomaly Score

Use Case: RDP Logs

Graph projections onto username from Remote Desktop Protocol (RDP) logs highlights that communities of users that login from the same IP have multiple aliases.

Conclusions

- 1. A novel method to capture and represent similarity between network entities
- 2. A scalable method to compute directional graph projections for enterprise scale networks
- 3. A method to rapidly visualize, identify, and interpret anomalies from cyber logs using graph features

Next Steps:

- 1. Identify more relevant and concrete cyber use cases for improvements and expansions on various similarity metrics and graph features.
- 2. We would like to extend our work to better account for temporally evolving graphs to identify significant events that occur on a network at a particular time.

