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Introduction

• Context Aware INference for Advanced Persistent 
Threat (CAIN for APT)
– DARPA Phase II SBIR 

• Challenge 
– Stealthy cyber attacks slip past state-of-the-art defenses, dealing 

crippling blows to critical US military and civilian infrastructure 

• Goal
– Rapid, automated, and accurate prioritization of cyber alerts provides 

timely and comprehensive cyber situational awareness (SA)

• Technical Approach
– Novel graph-analytics makes sense of noisy IDS sensors

– Novel Bayesian Dynamic Flow Model flags odd network traffic

– Tests and evaluations with APT simulations

9 Jan 2018 ©2018 Boston Fusion Corp. 2



Agenda

• Introduction

• Advanced Persistent Threats

• Graph-node Role-dynamics

• Bayesian Normalcy Modeling

• Summary

9 Jan 2018 ©2018 Boston Fusion Corp. 3



Advanced Persistent Threats 

• Often associated with 

nation-state espionage

• Targets include private 

organizations & nation-

states

• Low and Slow: Attack 

campaigns may last months

• Notoriously difficult to 

detect
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(Preprint: A. Lemay, et al. 2018)

Image: https://www.secureworks.com/blog/advanced-persistent-
threats-apt-a



Simulated APT Scenarios

• Simulation attributes
– Approx. 1 month of data per scenario

– Servers, laptops, switches

– Linux & Windows machines

– Normal & attacked behavior

– Generates IDS alerts and NetFlow
traffic

– Detailed attack timeline

• Hurricane Panda simulation
– Attack distributed over 3 days

– Database injection to gain credentials

– Lateral movement and firewall 
deactivation

• Energetic Bear (Crouching Yeti) 
simulation
– Attack distributed over 3 hours

– Email phishing to redirect user to 
malicious website

– Lateral movement through network 
using a remote-desktop exploit

– Attacker attempted to clean-up logs and 
other traces
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Network topology for simulations
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Graph-based Approach

• Fuses disparate IDSs

• Captures alert interdependencies

• Efficiently represents many alerts

• Robust to circumvention

• Unsupervised

• Facilitates causal analysis

• Optimal parameters determined automatically 

9 Jan 2018 ©2018 Boston Fusion Corp. 7
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Making Sense of Noisy IDS Sensors 

with Graph Analytics

• Novel, graph-based 

analysis of IDS alerts

– Load IDS alerts into alert 

graph

– Detect graph anomalies

• Advantages of graph-

based approach:

– Captures alert 

interdependencies

– Fuses disparate IDSs

– Efficiently represents alerts

– Robust to circumvention
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Akoglu et al. 2014 

Alert Graphs from Hurricane Panda Simulation

Normal Activity

Normal Activity

Normal Activity

Hurricane Panda Attack



Alert Graphs
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• Graph of alerts 

(Not network topology)

• Alert properties 

become nodes

• Colors indicate layers 

(property type)

• Edges connect nodes 

that co-occur in alerts

• Edges are weighted by 

frequency of co-

occurrence



Alert Graphs

• Graph of alerts 

(Not network topology)

• Alert properties 

become nodes

• Node colors indicate 

property type

• Edges connect nodes 

that co-occur in alerts

• Edges are weighted by 

frequency of co-

occurrence
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Alert Graphs

• Graph of alerts 

(Not network topology)

• Alert properties 

become nodes

• Node colors indicate 

property type

• Edges connect nodes 

that co-occur in alerts

• Edges weighted by 

frequency of co-

occurrence
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Alert Graphs
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• Cyber attacks change IDS 
alert logs 

• Intuition
– Changes in alert logs modify 

alert graph 

– Anomalies in the graph 
features (properties) may 
indicate cyber attacks

• Quick test
– Degree of IP nodes shows 

marked changes during 
simulated attack

– But a single feature is likely 
insufficient

– What features should we track? 

– Should we model all features 
for anomalies?

Normal Activity Hurricane Panda Attack



Role Dynamics
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• Infeasible to model every feature of 
every node 

• Instead, use graph-based anomaly 
detection algorithms

• Role dynamics (Rossi et al., 2012)
– Collect features and factorize as roles 

– Roles provide a succinct, integrated 
summary across a large number of features

– Output is probability of membership in each 
role, for each node

– Application to IDS alerts is novel

– Track role memberships over time



Role Dynamics
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alert graphs

Roles for nodes in Hurricane Panda simulation

• Infeasible to model every feature of 
every node 

• Instead, use graph-based anomaly 
detection algorithms

• Role dynamics (Rossi et al., 2012)
– Collect features and factorize as roles 

– Roles provide a succinct, integrated 
summary across a large number of features

– Output is probability of membership in each 
role, for each node

– Application to IDS alerts is novel

– Track role memberships over time



Role Dynamics
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• Why role dynamics?

– Linear

– Weighted

– Dynamic

– Attributed

– Unsupervised

– Explainable

– Extensible

– Automated parameter 

selection

– Available

• Explainable 
– Identifies anomalous nodes

– Helps with causal analysis

• Automated parameter 
selection
– Recursive features

– Optimal number of roles

– Set during a training period



Finding Role Anomalies
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• Role anomalies
– Now we have roles over 

time for all nodes in graph

– How to identify anomalies 
in the roles?

• Aggregate changes 
into a few useful 
metrics
– For example, average 

magnitude of the rate of 
change in role 
membership:
σ𝑛=1
𝑁 𝑃𝑛 𝑡 − 𝑃𝑛 𝑡 − 1 /𝑁

– Monitor metrics for 
anomalies

APT Attack Start



Results: APT Scenario 1

• Hurricane Panda scenario
– Virtual network of servers, laptops, 

switches, etc.

– Linux & Windows machines

– 9 Nov 2016 – 3 Dec 2016

– Attack distributed 30 Nov – 2 Dec

– Snort (NIDS) & OSSEC (HIDS)

– Database injection to gain 
credentials

– Lateral movement and firewall 
deactivation

• Results
– Using threshold at 0.3, CAIN 

identified 4 anomalies 

– Second two anomalies relate to 
machines coming online for the 
first time

– Last anomaly corresponds with the 
start of Hurricane Panda’s attack
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New machines 
added to network

APT Attack Start



Results: APT Scenario 2

• Energetic Bear scenario
– Same network as Hurricane Panda

– 1 Jan 2017 – 4 Feb 2016

– Attack on Jan 31, 2017

– 644,067 OSSEC (HIDS) alerts

– Email phishing to redirect user to 
malicious website

– Lateral movement through network 
using a remote-desktop exploit

– Attacker attempted to clean-up 
logs and other traces

• Results
– Using threshold at 0.3, CAIN 

identified 2 anomalies 

– Third anomaly corresponds with 
the start of the Energetic Bear 
attack
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APT Attack Start

Other anomalies



Conclusions: Making Sense of Noisy IDS 

Sensors with Graph Analytics
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• Graph-based Role-

dynamics:

– Fuses IDS sensor alerts

– Reduces >750k alerts to a 

handful of anomalies

– Identifies anomalies in IDS 

alerts during APT attacks

• Success in 2 APT 

scenarios demonstrates:

– Robust to different types of 

APTs and attack vectors 

– Insensitive to IDS systems

APT Attack StartOther Anomalies
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Bayesian Dynamic Flow Model

• Unsupervised model of NetFlow traffic 

dynamics

• Assume data follows Poisson distribution

• Model temporal evolution as Gamma-Beta 

discount model

– Prior:

– Posterior: 
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𝑥𝑡 ~ Poisson 𝜙𝑡

𝑥𝑡 ~ 𝑃 𝜙𝑡 𝑥0:(𝑡−1) = Γ 𝛿𝑡𝑟𝑡−1, 𝛿𝑡𝑐𝑡−1

𝑥𝑡 ~ 𝑃 𝜙𝑡 𝑥0:𝑡 = Γ 𝛿𝑡𝑟𝑡 , 𝛿𝑡𝑐𝑡

(X. Chen, et al. 2016)



Results

Bayesian Dynamic Flow Model
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Identifies anomaly 
during APT attack

• Complementary to graph-based role-dynamics

• Multiple methods corroborate detection

Identifies 
anomalous 
change in 
packet flow 
volatility
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Summary

• Developed two complementary anomaly 
detection techniques
• IDS: Graph-based Role Dynamics

• NetFlow: Bayesian Dynamic Flow Model

• Tested on two APT scenarios
• Hurricane Panda

• Energetic Bear (a.k.a. Crouching Yeti)

• Successful anomaly detection in two APT 
scenarios suggests:
– Robust to different types of APTs and attack vectors 

– Insensitive to IDS systems
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