

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Measures and Measurement for
Secure Software Development

ABSTRACT: This article discusses how measurement can be applied to software
development processes and work products to monitor and improve the security
characteristics of the software being developed. It is aimed at practitioners—
designers, architects, requirements specialists, coders, testers, and managers—
who desire guidance as to the best way to approach measurement for secure de-
velopment. It does not address security measurements of system or network op-
erations.

OVERVIEW
This practice area description discusses how measurement can be applied to
software development processes and work products to monitor and improve the
security characteristics of the software being developed. Measurement is highly
dependent on aspects of the software development life cycle (SDLC), including
policies, processes, and procedures that reflect (or not) security concerns. This
topic area is aimed at practitioners—designers, architects, requirements special-
ists, coders, testers, and managers—who desire guidance as to the best way to
approach measurement to monitor and improve the security characteristics of the
software being developed. It does not address security measurements of system
or network operations, nor does it address an organization’s physical security
needs.

MEASUREMENT AND THE SOFTWARE DEVELOPMENT LIFE
CYCLE
Measurement of both the product and development processes has long been rec-
ognized as a critical activity for successful software development. Good meas-
urement practices and data enable realistic project planning, timely monitoring
of project progress and status, identification of project risks, and effective pro-
cess improvement. Appropriate measures and indicators of software artifacts
such as requirements, designs, and source code can be analyzed to diagnose
problems and identify solutions during project execution and reduce defects, re-
work (effort, resources, etc.), and cycle time. These practices enable organiza-

Carol Dekkers

Dave Zubrow

James McCurley

February 2007

tions to achieve higher quality products and reflect more mature processes, as
delineated by the CMMI.1 Watchfire has published a short description of typical
application security activities for each level of the CMMI [SLDC areas related to
the definition and use of measures for secure development addressed in the Build
Security In modules include

1. Requirements Engineering
2. Architectural Risk Analysis
3. Assembly, Integration, and Evolution
4. Code Analysis
5. Risk-Based and Functional Security Testing
6. Software Development Life-Cycle (SDLC) Process
7. Coding Rules
8. Training & Awareness
9. Project Management

Risk management in general is addressed separately in the module Risk Man-
agement Framework. In contrast to the traditional focus of risk management on
project failure in software development, it must now be extended to address the
malicious exploitation of product flaws after release and throughout mainte-
nance. Threat modeling and its use in the SDLC is addressed in the Attack Pat-
terns content area. All of these areas are positively impacted by the use of meas-
urement.

SOFTWARE ENGINEERING MEASUREMENT PROCESS
Recent work to establish a common perspective on how to perform software
measurement and analysis can be found in International Organization for Stand-
ardization and International Electrotechnical Commission (ISO/IEC) 15939
(Software Measurement Process standard), the Capability Maturity Mode®l2
IIntegration (CMMI) Measurement and Analysis process area, and the guidance
provided by the Practical Software and Systems Measurement (PSM) project.
For purposes of description, the practices from the CMMI® model are presented

1 CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

2 Capability Maturity Model is registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

1 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

here. The practices are organized around two major goals or themes: aligning
measurement and analysis activities with organizational and project goals and
then performing the measurement and analysis activities. Briefly, the practices
for aligning measurement are

• Establish Measurement Objectives (Goals)
• Specify Measures
• Specify Data Collection and Storage Procedures
• Specify Analysis Procedures

The practices for performing measurement are

• Collect Measurement Data
• Analyze Measurement Data
• Store Results and Data
• Communicate Results

These practices, shown as steps in Table 1, are important for several reasons: (1)
goal driven measurement is an important first step to ensuring management
commitment to the measurement initiative, (2) the organization and/or project is
forced to target and measure the items necessary to meet the objective(s), and (3)
measurement enables greater success by providing a framework where decisions
and process improvement can occur through the analysis of data. The following
steps call for the organization and project to plan their measurement activities so
that the right measures are collected, analyzed, and communicated to the appro-
priate people in an informative format and timely manner. Project management
and insight into specific aspects of product quality depend on data that is rele-
vant, reliable, current, and valid. Following these practices (or steps) focuses the
measurement activities on the collection of data that will be used, rather than
simply collecting data for the sake of measurement.

With respect to the development of secure software, it is important that security
concerns be clearly identified and addressed in all steps of the measurement and
analysis process outlined below.

Table 1. Measurement and Analysis Process

Step
Num-
ber

Step Name Input Techniques Critical Par-
ticipants

Output

2 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

1 Establish
Measure-
ment Ob-
jectives
(Goals)

Soft-
ware/system
requirements

See Require-
ments Engi-
neering; also
elicitation prac-
tice area

Stakeholders,
requirements
team

Agreed-to
measure-
ment objec-
tives (for
which the
attainment
can be
measured)

2 Specify
Measures

Measurement
objectives,
SDLC

Facilitated work
sessions

Measurement
analysts,
process engi-
neers, securi-
ty subject
matter ex-
perts, us-
ers/customers

Measure-
ment defini-
tions for
security;
focus on
problem-
prone mod-
ules; known
vulnerabili-
ties; define
needed
security
levels

3 Specify
Data Col-
lection and
Storage
Procedures

Measurement
definitions,
SDLC

Procedure
/process map-
ping (and po-
tentially design
if a current
void)

Process engi-
neers, de-
signers, prac-
titioners

Process
changes,
training
needs, tool
needs

4 Specify
Analysis
Procedures

Measurement
objectives and
definitions
(GQM)

Literature re-
view, elicitation

Process engi-
neers, meas-
urement ana-
lysts, security
experts

Identified
statistical
and/or
qualitative
analytical
techniques

5 Collect
Measure-
ment Data

Measurement
plan, data
collection
tools and
infrastructure,
instrumented
processes

Automated
tools and man-
ual forms as-
sociated with
artifact inspec-
tions and test-
ing

Practitioners,
testers,
measurement
analysts,
quality assur-
ance

Data in
usable form
(e.g., data-
base,
spread-
sheet)

6 Analyze
Measure-
ment Data

Output of Step
5

Specified in
Step 4

Measurement
analysts

Summary,
graphical
displays,
detailed
results

3 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A67-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A67-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A67-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A533-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A533-BSI

7 Store Data
and Results

Outputs of
Steps 5 & 6

Inspection
database or
test results
database

Measurement
analysts,
database
administrators

Retrievable
source data
and analyti-
cal results

8 Communi-
cate Re-
sults

Analyst sum-
mary, graph-
ical report

Formatted
results with
interpretation
and recom-
mendations

Project engi-
neers, pro-
ject/line man-
agement,
security ex-
perts

Feedback to
develop-
ment team,
program
manager

Effective use of the above process relies first on agreeing on the desired security
characteristics and the importance of achieving the resultant measurement objec-
tives, which can be applied to both product and the development process. These
goals rely on explicit system requirements—which means that security aspects
must be specified early. The organization should assess the risk environment to
address probable threats and translate these concerns into specific requirements
addressing security as well as design and implement a development process that
will ensure the “building in” of such requirements.

After security-related requirements of the product are specified, measurement
objectives may be formulated that will provide insight into achieving the security
requirements. Examples of analytical questions which lead to measurement ob-
jectives include the following:

• What vulnerabilities have been detected in our products? Are our current
development practices adequate to prevent the recurrence of the vulnerabili-
ties?

• What process points are most vulnerable to the introduction of security-
related risks (e.g., injecting reused code/modules into programs—where the
variables could go unchecked, etc.)?

• What proportion of defects relate to security concerns and requirements? Do
defect classification schemes include security categories?

• To what extent do practitioners comply with security-related processes and
procedures?

• To what extent are security concerns addressed in the intermediate work-
products (requirements, design, etc.)? Have measures associated with securi-
ty requirements and their implementation been defined and planned?

• What are the critical and vulnerable modules? Have vulnerabilities been
identified and addressed?

4 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

Threat modeling, or the attempt to identify likely types and sources of attacks,
can also form a significant guiding requirement to the development processes for
secure products. A recent thesis by Stuart E. Schechter at Harvard’s Department
of Computer Science uses economic models for valuing the discovery of vulner-
abilities in the final or end product during development [Schechter 2004]. His
measurement of security strength depends most on threat scenarios to assign val-
ues to vulnerabilities in an effort to extend a market approach to the development
process. Many risk and threat methodologies are available publicly, and Mi-
crosoft has published extensive materials that delineate the company’s approach
to analyzing and mitigating threat risks during the SDLC [Microsoft 2003,
MSDN 2004].

PROCESS MEASURES FOR SECURE DEVELOPMENT
Process artifacts that implement security measurement objectives for the devel-
opment process should address

• the existence of security policies applicable to the SDLC (roles, procedures,
responsibilities, management, coding rules, acceptance/release criteria, etc.)

• compliance to the above
• efficiency and effectiveness over time

The security measurement objectives for the development process are identical
to general measurement objectives—they need to be included in the process im-
plementation. Such measures could be implemented as part of an organization’s
integrated quality assurance function.

Although targeted for systems development and risk assessment as a whole, use-
ful guidance for measurement of this type can be found in the NIST publication
Security Metrics Guide for Information Technology Systems [Swanson 03]. Risk
management can encompass secure coding and provides a familiar framework to
incorporate new practices and procedures to address software security issues. As
mentioned in Software Security: Building Security In [McGraw 2006], tracking
risk throughout the life cycle of a software development project affords manag-
ers and analysts the ability to assess relative measures of risk improvement.

The least expensive approach to software development dictates that flaws/defects
are identified as early as possible in the life cycle. Requirements analysis typical-
ly addresses the functional aspects of the product, but with security in mind, ad-
ditional analysis of non-functional requirements must also be used to identify
security concerns. Security requirements often take the form of what is not sup-

5 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

posed to occur but can still be tracked to closure in the same manner as other
requirements. Security requirements can also be a mix of both functional and
non-functional requirements. Threat modeling is especially important to this
phase of the life cycle since it can help in the preparation of test strategies and
use cases. This risk-based view of development carries through the design phase
with new insight into architectural concerns (see Architecture module). Proper
design incorporating security that is implemented correctly as the code is con-
structed minimizes the attackability of the final product. Again, effective code
policies can be tracked for compliance during design and through the remainder
of the life cycle.

Testing schedules have often suffered in past projects as the need to deploy the
product overrides other concerns. Security ramifications are changing this view
due to the potential impacts of the attackability of the final product. The func-
tional testing practices of the past prove insufficient to deal with non-functional
security issues. Addressing security up front means having a test strategy
throughout the life cycle where security issues are addressed in each phase and
are not passed on to the next phase of product development. As mentioned
above, this requires tracking bugs early on, but it also requires security test plan-
ning at an early stage and confronts risk issues identified in the requirements and
design stages.

Measurements prove valuable when they are useful, key components of the de-
velopment effort, as opposed to mere status reports. To achieve usefulness
throughout the life cycle, however, everyone involved must understand the
measurement’s definitions and uses. Appendix A includes a measurement indica-
tor template for documenting the key attributes of each indicator (e.g., measures
used to construct the indicator, algorithm used, assumptions, etc.). The template
has found wide acceptance for documenting the indicators used to implement
software engineering measurement and can be used for new security measure-
ment purposes. It forms a fundamental building block for any measurement pro-
gram and, over time, allows the organization to catalog its metrics definitions
and enables trend analysis. As an organization gains experience in building se-
cure software, such trend analyses provide useful feedback to project managers
about the efficacy of each process. More than that, trends also identify the effec-
tiveness of policies, tools, and techniques and also allows for better estimation of
all engineered parameters, including security.

Defect density is a commonly used measure of product quality. It is often com-
puted as the number of defects discovered during system test or during the first
six months of operational use divided by the size of the system. Estimates of de-
fects remaining in the product (calculated by techniques such as phase contain-
ment, defect depletion, or capture-recapture techniques) form a natural analogue

6 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

to estimate remaining security vulnerabilities in the software. Phase containment
of defects refers to an analytical technique that measures the proportion of de-
fects originating in a phase that are detected within that same phase. It provides a
good characterization of the ability of the development process to maintain
quality throughout the SDLC. The INFOSEC Assurance Capability Maturity
Model (IA-CMM) recognizes the impact of quality control by listing “Establish-
ing Measurable Quality Goals” as one of two features that enable a level 4 rating
of Quantitatively Controlled [NSA 2004].

PRODUCT MEASURES FOR SECURE DEVELOPMENT
In the product context, security concerns addressed by measurement objectives
may take the form of

security requirements, which are based on risks determined by threat assess-
ments, privacy policies, legal implications, and so forth and can be specified as
to extent and completeness

1. architecture security, which addresses the specified security requirements
2. secure design criteria, where security requirements can be traced
3. secure coding practices, where integrity can be assessed and measured

Not all measures need to be complicated. Measures should be as simple as possi-
ble while still meeting information needs. For example, in the requirements
phase it is useful to know whether security-related concerns have been included
in defining system requirements. This could be measured initially as yes or no.
As experience with the measure accrues over time, the measure could evolve to
characterize the extent that requirements have been checked and tested against
security concerns. Determining the extent that security measurement objectives
are implemented during the design and coding phases will make use of tools as
well as inspections or reviews. Many of the inspection measurements will be in
the form of traditional defect identification checklists, to which security-oriented
items have been added. Table 2 lists some sources of vulnerabilities or concerns
that have been widely documented, along with a reference to the part of ISO/IEC
9126 that has defined a relevant measure. Software inspection checklists could
be extended to include review of the issues in the table.

For instance, one could track the percentage of sources of input that have valida-
tion checks and associated error handling. That is, checking each input source for
length, format, type, and so forth and its associated exit flows—either accepted
then executed or as an error/exception and not executed. The target for this

7 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

measure would be 100%, unless performance suffers unacceptably as a result, or
it would cost too much to implement. Note that while this simple measure is an
improvement over no measurement for this type of vulnerability, it does not ad-
dress the potentially complex issue of determining the effectiveness of an input
validation technique as implemented and whether any particular datum should be
counted in the tally. This would require ongoing tracking of this measure’s per-
formance to characterize the effectiveness of the input validation techniques
used. Over time, the organization can benchmark these kinds of measures as
performance standards.

Table 2. General Code Integrity Issues

• access control
• access controllability (ISO 9126-3)
• access auditability (ISO 9126-3)

• input validation – particularly to address buffer overflows, format string attacks, SQL injection,
etc.

• exception handling/error traps (log bad entries, no execute)
• resource management - consumption, retention, race conditions, closure, etc.
• privileges management – principle of least privilege
• system calls, process forks, etc.
• unexpected behavior or system response
• data security issues

• data security levels (proprietary, classified, personal, etc.)
• data encryption (ISO 9126-3)
• data corruption prevention (ISO 9126-3)

• garbage handling/memory management
• risk analysis (identified risks, ranked, with impact analysis, and mitigation and fallback plans)
• implementation bugs
• architectural flaws

Web Applications
• scripting issues
• sources of input
• forms, text boxes, dialog windows, etc.
• regular expression checks
• header integrity
• session handling
• cookies
• framework vulnerabilities (Java, .NET, etc.)
• access control: front and back door vulnerability assessment
• penetration attempts versus failures
• depth of successful penetrations before detection

8 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

Simple measures of enumeration and appropriate security handling for vulnera-
bilities would provide insight into the security status of the system during devel-
opment. In addition to the above table, a useful list of “Measurable Security En-
tities” and “Measurable Concepts” has been published by Practical Software and
Systems Measurement [PSM 2005].

The following questions generated by the PSM/DHS Measurement Technical
Working Group address many of the above issues and can provide starting points
for developing measurement objectives:

Planning:
• How much of the system incorporates security features?
• What is the current state of completion of planned security tasks, and how is

it measured?
• Do I have qualified people, tools, and environments?
• Do I have qualified tools that support security analysis during development?
• How effective are the security tools?
• How effectively are the tools used?
• How many (insecure) code practices do these tools identify?
• How much does it cost to implement security aspects?
• What is the scope of the security-critical functions, system, and software?
• What are the potential losses/damages?
• What are the external threat agents?
• What security risks are covered by financial means?
• How badly can I be harmed if the system is violated? If something happens,

how much is lost or harmed? How valuable is the data? What is the level of
criticality? How is it measured?

Requirements phase:
• Are we following the best practices when expressing (security) require-

ments?
• Are the security requirements valid? Do they meet user needs?
• Have we traced our security requirements?
• Have all sources been considered (e.g., threats, assets, usability, certifica-

tion)?
• Have all stakeholders been considered?
• Can I tell if it a security requirement has been satisfied?
• Are security requirements completed on schedule?
• Have requirements been deliberately changed?
• What is the rate of change of security requirements?

9 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

• Does each security requirement trace to an appropriate design unit(s)?

Design:
• Have we followed security design principles?
• Is the design sufficiently detailed to meet the security requirements placed

on it?
• Can the design be analyzed to verify that it meets the security policy and

requirements?
• What external systems and interfaces does this system depend on for securi-

ty risk mitigation?

Coding:
• Has each unit complied with the secure coding practices?
• Have bugs been identified, classified, and traced to requirements?
• Do we have adequate coverage of security in user aids (help files, manuals,

training, etc.)?

Testing:
• Have we completed security testing (e.g., attacks, penetration)?
• Have all identified security issues been resolved?
• How broad is the security testing?

− Does it include tools and people?
− How many attack patterns are evaluated?
− Are we testing at the unit, subsystem, system-of-system level?
− Is the testing static or dynamic?

• What is the scope of the attack surface?
• Have we provided sufficient information with defects to allow prioritization,

root cause analysis, and remediation of vulnerabilities?
• In resolving non-security defects, have we introduced any security issues?
• What is the current progress of evidence development?

The following measures from a variety of sources have been suggested as useful:

• number of security defects discovered in-house versus in the field
• number of security defects detected in strategy or design versus in the field

(repeat for each phase)
• predicted versus actual labor costs for fixing defects at each stage of devel-

opment
• security defects per thousands of lines of code (KLOC)

10 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

• number (and percent) of security defects considered
low/medium/high/critical

• number (and percent) of security defects fixed
• average or median time (and cost) to fix each defect
• quartile rankings for each developer group, based on defects/KLOC and av-

erage or median time to fix, ranked by severity

And finally, questions the organization should address as a whole:

• Are risk mitigations on schedule?
• How many known vulnerabilities exist in the system? How many have been

resolved or accepted as risks documented and transmitted to the customer?
• Have we followed the regulatory requirements?
• Have we followed the organization’s standard process model?
• Have we followed the relevant best practices?
• Have we followed the relevant policies?
• Have we modified our process to detect new potential threats?
• How much residual security risk exists in the operational system? How

much confidence do you have in this answer?
• Have we created any unintended security consequences with anything else

we have done?
• How efficiently has the security investment been used?
• Have my choices in security improvements been well timed, well spent, and

appropriate?
• Are my customers satisfied with the product’s security?

These questions can form a solid basis for measurement in most development
organizations, regardless of size or methods employed. They are presented here
to further the discussion of what constitutes adequate measurement to address
security issues during development, and should not be interpreted as exhaustive.
Each question requires some extensive, non-trivial work to come up with agreed
upon definitions before it can be measured.

COMMUNITY OF INTEREST
The continuing onslaught of software systems by malicious actors has prompted
a great deal of activity. Every week there are new stories of compromised sys-
tems, yielding private information. Recently, we’ve again seen cyberwar activi-
ties that raise new concern for national security. And we still see the deployment
of new software-intensive systems that do not perform as intended and that ena-
ble exploitation.

11 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

In the last few years, the development community and the acquirers of software
systems have initiated several collaborative efforts aimed at improving the trust-
worthiness of software. One such effort has resulted in the development of a
Software Assurance Evidence Metamodel (SAEM). The published specification
defines terms and characterizes software assurance evidence that can be used for
judging whether a particular software system fulfills a given set of requirements.
Although this is only the first in a series of specifications, it represents a promise
leading to the creation of new tools related to software assurance. Evidence is
defined as facts, which are grouped in the following categories:

• software artifacts
• software operational environment
• methodologies
• development process
• people
• development environment
• regulatory compliance controls

This effort is being led by Adelard LLP, KDM Analytics/Hatha Systems, Lock-
heed Martin, Computer Sciences Corporation, and Benchmark Consulting and is
supported by the University of York, MITRE, and the SEI.

Another broad-reaching effort was initiated by the U.S. Department of Defense
(DoD), Department of Homeland Security (DHS), and National Institute of
Standards and Technology Software Assurance (SwA) Measurement Working
Group. The Practical Measurement Framework for Software Assurance and In-
formation Security resulting from the effort of industry, government, and aca-
demic collaborators will be published online in October 2008. Given the long
term nature of the collaboration, the Practical Measurement Framework leverag-
es several useful resources that have become available, particularly the Common
Vulnerabilities and Exposures (CVE), Common Control Enumeration (CCE),
Common Weakness Enumeration (CWE), and Common Attack Pattern Enumer-
ation and Classification (CAPEC).

The Common Vulnerabilities and Exposures (CVE) list is probably the best
known of the above resources, in that it has gained widespread agreement and
adoption. It is a valuable resource that provides the community with an ability to
communicate effectively about vulnerabilities of software systems. Begun in
1999, the dictionary currently lists about 6,000 publicly known vulnerabilities.
The Common Weakness Enumeration (CWE) is of particular interest to the de-
velopment community, since it lists some 605 (as of Sept 2008) weaknesses in
source code and operational systems related to architecture and design. This in-

12 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

sight can lead to useful measurements regarding assurance quality and compli-
ance and also to the development of new tools for building and evaluating soft-
ware.

The Common Attack Pattern Enumeration and Classification (CAPEC) address-
es the need to identify how vulnerabilities are exploited by giving the community
a “firm grasp of the attacker’s perspective and the approaches used to exploit
software.” Knowledge of attack patterns can be especially useful during devel-
opment activities to build defense into the software system. These resources and
more have been established by MITRE and can be accessed directly or through
their website, Making Security Measurable. The Practical Measurement Frame-
work provides measurement insight utilizing these and other resources such as
ISO/IEC standards 15939, 16085, 21827, 27001, and 27004, the CMMI Meas-
urement & Analysis Process Area, and the CMMI GQ(I)M template (provided as
an appendix).

The main organizing principle of the Practical Measurement Framework ad-
dresses concerns of poor-quality, unreliable, and non-secure software through
the measurement of software assurance goals and objectives at project, program,
and enterprise levels. It presents generic key measures from the supplier, acquir-
er, and the practitioner perspectives and cross-references these measures to the
resources mentioned above when appropriate. Each perspective identifies the
Measure, Information Need, and Benefit grouped by activity. For example, Table
3 shows a (draft) portion of the document regarding Supplier Measures During
Design.

Table 3. Supplier Measures During Design

 Measures Information Need Benefit

Design Number of entry points for a
module (should be as low as
appropriate)

Reduce opportunity for
back doors

Ascertain that future appli-
cation handles data inputs
as required
Reduce opportunity for
exploits
Reduce attack surface Percent of data input compo-

nents that positively validate
all data input

Determine if data vali-
dation is handled as
required

Percent of data input compo-
nents that positively validate
all data input

Identify origins of de-
fects
(injection points during
the SDLC)

13 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

TOOLS
Several tools now exist for checking source code for security vulnerabilities and
often output measurements as explicit results. Although many companies deline-
ate the conceptual basis for their tools, few offer specific guidance regarding the
measurements employed. Two companies provide concrete examples of their use
of measurement.

1. Microsoft’s Secure Windows Initiative used the Relative Attack Surface
Quotient (RASQ) as initially presented by Michael Howard [Howard 2003].
This calculated number is put forth as a cyclomatic complexity measure for
security that yields a relative metric of a product’s “attackability.” The
measure is based on the identification of all the external exposures in the
product code, with the goal of reducing the product’s attack profile. It is of
limited use because the measures are meaningful only for like products, but
an independent evaluation did confirm the measure’s effectiveness [Ernst &
Young LLP 2003]. Manadhata and Wing from Carnegie Mellon’s Comput-
er Science Department also successfully applied the measurement to Linux
[Manadhata 2004].

2. Many static analysis tools exist that do a competent job of identifying
common vulnerabilities as the code is being written by using contextual
analysis that is language specific. For example, Ounce Labs’ Prexis com-
putes a V-density measure to relate the number and criticality of vulnerabil-
ities in the code for project decision-making. As an integrated software risk
management and vulnerability assessment product, Prexis includes (1)
Prexis/Engine: Source Code Vulnerability Scanning and Knowledgebase
Core, (2) Management Risk Dashboard, and (3) Developer Remediation
Workbench for the product development life cycle.

Also see the following BSI content areas: Black Box Testing Tools, Code Anal-
ysis Tools, and Modeling Tools. Note that spreadsheet programs, statistical
packages, and database programs can be very helpful for some measurement and
analysis purposes. Some vendors also offer tools that harvest data from other
databases and repositories to produce a variety of measurement reports.

Various development tools now include static and dynamic capabilities for ana-
lyzing security characteristics within the code, and integrated developer envi-
ronments become easier to use as new releases cater to the community’s need for
better security tools. Several companies now offer complete development envi-
ronments which incorporate functional, non-functional, and runtime analysis.
White box testing tools are available to integrate into the development environ-
ment that offer interactive feedback and remediation suggestions to the develop-

14 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

er during the coding process. Developers can then see the impact of their coding
decisions and can choose between suggested remedies to the code. This proac-
tive ability of some of the new tools should not only help to accomplish secure
coding but also improve quality.

MATURITY OF PRACTICE
Software measurement is becoming a somewhat mature field, as evidenced by
professional and international standards, specialized conferences, and several
decades of literature and research. In spite of this history, the practice of software
measurement is still highly variable among software development organizations,
with many doing little to measure their projects and products during develop-
ment. Also, very few organizations employ any form of measurement, much less
sophisticated data analysis techniques for decision making, to assess the security
characteristics of their products in a quantitative manner during development.
Indeed, few even address security concerns in any manner. Very little exists in
the published literature concerning the use of software measurement with respect
to characterizing security concerns during software development.

APPENDIX: INDICATOR TEMPLATE

Current Version
The current version of the indicator template is shown below. Fields that have
been added based on user feedback are shown in italics.

15 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

Field Descriptions

Date

Indicator Name/
Title

Objective Describe the objective or purpose of the indicator.

Questions List the question(s) the user of the indicator is trying to answer. Examples: Is the
project on schedule? Is the product ready to ship? Should we invest in moving
more software organizations to CMM maturity level 3?

16 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

Visual Display Provide a graphical view of the indicator.

Perspective Describe the audience (for whom is this display intended) for the visual display.

Input(s)

- Data Elements List all the data elements in the production of the indicator.

- Definition Precisely define the data element or point to where the definition can be found.

Data Collection

- How Describe how the data will be collected.

- When/How Of-
ten

Describe when the data will be collected and how often.

- By Whom Specify who will collect the data (an individual, office, etc.)

- Form(s) Refer to any standard forms for data collection (if applicable) and provide infor-
mation about where to obtain them.

Data Reporting

- Responsibility
for Reporting

Indicate who has responsibility for reporting the data

- By/To Whom Indicate who will do the reporting and to whom the report is going. This may be
an individual or an organizational entity.

- How Often Specify how often the data will be reported (daily, weekly, monthly, as required,
etc.)

17 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

Data Storage

- Where Indicate where the data is to be stored.

- How Indicate the storage media, procedures, and tools for configuration control.

- Security Specify how access to this data will be controlled.

Algorithm Specify the algorithm or formula required to combine data elements to create
input values for the indicator. It may be very simple, such as Input1/Input2, or it
may be much more complex. It should also include how the data is plotted on
the graph.

Assumptions Identify any assumptions about the organization, its processes, life cycle mod-
els, and so on that are important conditions for collecting and using this indica-
tor.

Interpretation Describe what different values of the indicator mean. Make it clear how the
indicator answers the “Questions” section above. Provide any important cau-
tions about how the data could be misinterpreted and measures to take to avoid
misinterpretation.

Probing Ques-
tions

List questions that delve into the possible reasons for the value of an indicator,
whether performance is meeting expectations or whether appropriate action is
being taken.

Analysis Specify what type of analysis can be done with the information.

Evolution Specify how the indicator can be improved over time, especially as more histori-
cal data accumulates (e.g., by comparing projects using new processes, tools,
environments with a baseline; using baseline data to establish control limits
around some anticipated value based on project characteristics).

Feedback Guide-
lines

Include a description of the procedure to use when recommending modification
to the indicator template.

X-References If the values of other defined indicators influence the appropriate interpretation
of the current indicator, refer to them here.

Source: Goethert, Wolfhart & Siviy, Jeannine. Applications of the Indicator
Template for Measurement and Analysis (CMU/SEI-2004-TN-024). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tn024.html.

18 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

Copyright © Carnegie Mellon University 2005-2012.

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Capability Maturity Model® and CMM® are registered marks of Carnegie Mellon
University.

DM-0001120

19 | MEASURES AND MEASUREMENT FOR SECURE SOFTWARE DEVELOPMENT

	Measures and Measurement for Secure Software Development
	Overview
	Measurement and the Software Development Life Cycle
	Software Engineering Measurement Process
	Process Measures for Secure Development
	Product Measures for Secure Development
	Planning:
	Requirements phase:
	Design:
	Coding:
	Testing:

	Community of Interest
	Tools
	Maturity of Practice
	Appendix: Indicator Template
	Current Version
	Field Descriptions

