
Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 1

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Technical Debt Analysis through
Software Analytics
Dr. Ipek Ozkaya
Principal Researcher

Research Review 2017

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 2

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0795

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 3

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Technical Debt Analytics

The Solution
Develop software analytics capabilities
integrating data from multiple, commonly
available sources.

Combine machine learning, refactoring and
code analysis, and data mining techniques to
create technical debt items that identify
problematic issues with potential long-term
adverse consequences.

The Problem
Government acquirers need capabilities to
assess the technical debt in software and its
cost impact.

Managing technical debt relies on an
ability to:
1. identify design decisions
2. quantify consequences of such unintentional

and intentional design decisions.

Technical debt describes a universal software development phenomenon:
design or implementation constructs that are expedient in the short term, but
set up a technical context that may make future changes costly.

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 4

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

How do Experts Know Technical Debt

Crash due to large negative number.

"We could just fend off negative numbers near
the crash site or we can dig deeper and find out
how this -10000 is happening."

"Time permitting, I'm inclined to want to know
the root cause. My sense is that if we patch it
here, it will pop-up somewhere else later."

"there must be multiple things going on here"

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 5

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Our Progress

Approach – 2-Year Plan

Create a technical debt classifier
• Apply topic modeling algorithms

to issue tracker data sets to extract
topics related to accumulating rework

• Extract categories of TD related design
(e.g., build dependencies, dead code).

Issue

trackers

Correlate analysis rules with TD topics
• Identify recurring design concepts, their

mappings to code analysis rules and their
interrelationships

• Run code analyzers to detect quality
violations to identify candidate TD items

Analyzers
In e.g. FindBugs,

CheckStyles)
(Plug

Issue

trackers

Source
code

Commit

history

Clustering the
files with
evidence

Consolidate TD items
• Run criteria for consolidations

(e.g. same design concept, same
files, co-changing files) and
extract impacted additional files
with related violations.

Rank TD items
Identify relative number of defects, change and bug churn
and locations in the code base that require changes.

Ranking

Datasets

TD Dashboard

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 6

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Applying ML to Technical Debt Extraction from Issue Trackers

Experimenting using supervised algorithms
and improve our training set:
• Experts consistently agree, while some

algorithms clue on refactoring action
phrases such as “style errors” that are
not design related

• Developers do identify long lasting
design issues as technical debt, but not
consistently.

Deployment & Build Out-of-sync build dependencies

Version conflict
Dead code in build scripts

Code Structure Event handling
API/Interfaces

Unreliable output or behavior
Type conformance issue

Dead code
Large file processing or rendering

Encapsulation
Caching issues

Data Model Data integrity
Data persistence

Duplicate data

Regression Tests Test execution
Overly complex tests

Manual analysis on four data sets reveal some common issues

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 7

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Approach:
n-gram feature engineering and
gradient boosting focusing on
• modeling with boosting algorithms

to build the weighted average of
many classification trees –
iteratively improving the weak
classifiers and creating a final
strong classifier

• increasing our labelled data set,
which includes actual examples
where developers themselves
declare the issues as technical
debt

- Our models are improving, especially in recall (more
true debt is identified)

- Experimenting with improving accuracy (all debt is
identified)

- We are engaged with stakeholders eager to try this
approach out on their data

Applying ML to Technical Debt Extraction from Issue
Trackers

Model Precision Recall Test
count

F-measure Training
Count

1 0.60 0.42 510 0.50 157

2 0.71 0.32 411 0.44 256

3 0.77 0.42 311 0.54 356

4 0.74 0.70 161 0.72 506

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 8

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Approach:
Are some rules more useful
than others? Analyzed 466
Java & C# rules across three
tools:
• 55% were easily labeled as non-

design and 19% were labeled as
clearly design, others needed
further context

• Design rules go beyond
statement level quality checks
and are cross system
boundaries.

• Currently validating with open
source & collaborator projects.

Analysis Rules and Design Topics

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 9

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Analysis Rules and Design Topics

Applied design rule extraction to 9 projects:
• Teams consistently rate maintainability rules as low priority
• We are able to identify deep routed design problems such as logging, exception

handling, synchronization that should have been acted on earlier

 334 Standard outputs should not be used directly to log anything DR
 39 Nested code blocks shold not be used DR
 20 @FunctionalInterface annotations shold be used to flag Single Abstract Method interfaces DR
 20 clone should not be overridden DR
 19 Classes should not be too complex DR
 17 “Exception” should not be caught when required by called methods DR
 15 Methods should not have too many parameters DR
 10 Classes named like “Exception” should extend “Exception” or a subclass DR
 3 Exception handlers should preserve the original exceptions DR
 2 Throwable and error should not be caught DR
 2 Credentials should not be hard-coded DR

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 10

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Impact

Role
Contribution
to our work SEI Impact

DoD PM, sustainment
professionals

Challenge problems,
project measures

Help develop policy guidance,
(e.g., AFLMC work)

Defense contractors Data, feedback,
validation

Develop organizational practices
(e.g., Lockheed Martin data sharing)

Industry Data, feedback,
validation

Incentivize teams to identify technical
debt (e.g., ABB data sharing)

Tool vendors Transition partner Extend tools to label and analyze technical
debt items (e.g., Silverthread, Lattix)

Researchers,
students, PIs

Technical validity Community leader
(e.g. increased number of PhDs; the
first 2-day conference on TechDebt at
ICSE 2018)

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 11

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Summary

Our progress is on target with interim pilot opportunities
• The issue tracker analysis provides an opportunity for uncovering systemic, lingering

issues.
• Design rule analysis provides an opportunity to analyze systems with a different

perspective and reprioritize the results accordingly.

Future work includes bringing these pieces together for an ongoing software analysis
capability

• DoD and other government stakeholders need this capability! There is increasing
lack of understanding of the state of the software quality and its consequences.

• The advances in data analytics techniques is an opportunity.
• Technical debt will only be more important to analyze for and manage!

Technical Debt Analysis through Software Analytics
© 2017 Carnegie Mellon University 12

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Provide Contact Information

Presenter
Dr. Ipek Ozkaya
Principal Researcher
ozkaya@sei.cmu.edu

Team
Dr. Robert Nord, SSD
Stephany Bellomo, SSD
James Ivers, SSD
Dr. Zach Kurtz, CERT

