Rapid Expansion of Classification Models to Prioritize Static Analysis Alerts for C

Lori Flynn, PhD Software Security Researcher

Carnegie Mellon University Software Engineering Institute

Rapid Expansion of Classification Models to Prioritize Static Analysis Alerts for C © 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0790

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop "Woman And Laptop"

Carnegie Mellon University Software Engineering Institute

Scientific Approach

<u>Build on novel (in FY16) combined use of</u>:1) multiple analyzers, 2) variety of features,3) competing classification techniques!

Problem: too many alerts Solution: automate handling

Competing Classifiers to Test
Lasso Logistic Regression
CART (Classification and Regression
Trees)
Random Forest
Extreme Gradient Boosting (XGBoost)
Some of the features used (many more)
Analysis tools used
Significant LOC
Significant LOC Complexity
Significant LOC Complexity Coupling
Significant LOC Complexity Coupling Cohesion

Rapid Expansion of Alert Classification

Problem 2

Too few manually audited alerts to make classifiers (i.e., to automate!)

Problems 1 & 2: Security-related code flaws detected by static analysis require too much manual effort to triage, plus it takes too long to audit enough alerts to develop classifiers to automate the triage.

Extension of our FY16 alert classification work to address challenges:

- 1. Too few audited alerts for accurate classifiers
- 2. Manually auditing alerts is expensive

Solution 2

Automate auditing alerts, using test suites

Solution for 1 & 2: Rapid expansion of number of classification models by using "pre-audited" code, plus collaborator audits of DoD code.

Problem 1: too many alerts Solution 1: automate handling

Approach

1. Automated analysis of "pre-audited" (not by SEI) tests to gather sufficient code & alert feature info for classifiers

2. Collaboration with MITRE: Systematically map CERT rules to CWE IDs in subsets of "pre-audited" test code (known true or false for CWE)

3. Modify SCALe research tool to integrate CWE (MITRE's Common Weakness Enumeration)

4. Test classifiers on alerts from realworld code: DoD data

Overview: Method, Approach, Validity

Problem 2: too <u>few</u> manually audited alerts to make classifiers (i.e., to automate) **Solution 2:** automate auditing alerts, <u>using test suites</u>

Rapidly create **many** coding-rule-level classifiers for static analysis alerts, then use DoDaudited data to validate the classifiers.

Technical methods:

- Use test suites' CWE flaw metadata, to quickly and automatically generate many "audited" alerts.
 - Juliet (NSA CAS) 61,387 C/C++ tests
 - IARPA's STONESOUP: 4,582 C tests
 - Refine test sets for rules: use mappings, metadata, static analyses
- Metrics analyses of test suite code, to get feature data
- Use DoD-collaborator enhanced-SCALe <u>audits</u> of their own codebases, to validate classifiers. **Real** codebases with more complex structure than most pre-audited code.

Make Mappings Precise

Problem 2: too few manually audited alerts to make classifiers
Solution 2: automate auditing alerts, using test suites

Problem 3: Test suites in different taxonomies (most use CWEs) **Solution 3:** <u>Precisely map between taxonomies</u>, then partition tests using precise mappings

Precise mappings: Defines *what kind* of non-null relationship, and if overlapping, *how.* Enhanced-precision added to "imprecise" mappings.

Imprecise mappings ("some relationship")

Mappings				
Precise	248			
Imprecise TODO	364			
Total	612			

Now: all CERT C rules mappings to CWE precise

If a **condition** of a program violates a CERT rule *R* and also exhibits a CWE weakness *W*, that **condition** is in the overlap.

Test Suite Cross-Taxonomy Use

Partition sets of thousands of tests relatively quickly.

Examine together:

- Precise mapping
- Test suite metadata (structured filenames)
- <u>Rarely</u> examine small bit of code (variable type)

CWE test programs useful to test CERT rules

STONESOUP: 2,608 tests

Juliet: 80,158 tests

• Test set partitioning incomplete (32% left)

Some types of CERT rule violations not tested, in partitioned test suites ("0"s).

- Possible coverage in other suites

Problem 3: Test suites in different taxonomies (most use CWEs)Solution 3: Precisely map between taxonomies,

then partition tests with precise mappings

CERT rule	CWE	Count files that match
ARR38-C	CWE-119	0
ARR38-C	CWE-121	6,258
ARR38-C	CWE-122	2,624
ARR38-C	CWE-123	0
ARR38-C	CWE-125	0
ARR38-C	CWE-805	2,624
INT30-C	CWE-190	1,548
INT30-C	CWE-191	1,548
INT30-C	CWE-680	984
INT32-C	CWE-119	0
INT32-C	CWE-125	0
INT32-C	CWE-129	0
INT32-C	CWE-131	0
INT32-C	CWE-190	3,875
INT32-C	CWE-191	3,875
INT32-C	CWE-20	0
INT32-C	CWE-606	0
INT32-C	CWE-680	984

Carnegie Mellon University Software Engineering Institute Rapid Expansion of Classification Models to Prioritize Static Analysis Alerts for C © 2017 Carnegie Mellon University

Process

Generate data for Juliet

Generate data for STONESOUP

Write classifier development and testing scripts

Build classifiers

- Directly for CWEs
- Using partitioned test suite data for CERT rules

Test classifiers

Problem 1: too many alerts

Solution 1: automate handling

Problem 2: too <u>few</u> manually audited alerts to make classifiers

Solution 2: automate auditing alerts, <u>using</u> <u>test suites</u>

Problem 3: Test suites in different taxonomies (most use CWEs)

Solution 3: Precisely map between taxonomies, then partition tests using precise mappings

Using CWE Test Suites for Multi-Taxonomy Classifiers

Analysis of Juliet Test Suite: Initial CWE Results

- We automated defect identification of Juliet flaws with location 2 ways
 - A Juliet program tells about only one type of CWE
 - Bad functions definitely have that flaw
 - Good functions definitely don't have that flaw
 - Function line spans, for FPs
 - Exact line defect metadata, for TPs
- Used static analysis tools on Juliet programs
- We automated alert-to-defect matching

Ignore unrelated alerts (other CWEs) for program
Alerts give line number

Number of "Bad" Functions	103,376
Number of "Good" Functions	231,476

	Tool A	Tool B	Tool C	Tool D	Total
"Pre-audited" TRUE	1,655	162	7,225	16,958	26,000
"Pre-audited" FALSE	8,539	3,279	2,394	23,475	37,687

- We automated alert-to-alert matching (alerts fused: same line & CWE)

Lots of new	Alert Type	Equivalence Classes: (EC counts a fused alert once)	Number of Alerts Fused (from different tools)
data for creating	TRUE	22,885	3,115
classifiers!	FALSE	29,507	8,180

- These are initial metrics (more EC as use more tools, STONESOUP)

Juliet: Data from 4 Tools, per CWE

Carnegie Mellon University Software Engineering Institute Rapid Expansion of Classification Models to Prioritize Static Analysis Alerts for C © 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Classifiers: Accuracy, #Alerts, AUROC

Rule	Accuracy	# Alerts	AUROC	R
ARR30-C	96.9%	483	99.8%	FIC
ARR32-C	100.0%	947	100.0%	FLF
ARR36-C	63.3%	30	50.0%	FLF
ARR37-C	74.0%	77	83.6%	ΙΝΤ
ARR38-C	94.0%	397	98.0%	INT
ARR39-C	67.7%	31	50.0%	INT
CON33-C	100.0%	88	100.0%	INT
ERR33-C	91.2%	376	94.9%	INT
ERR34-C	100.0%	947	100.0%	INT
EXP30-C	100.0%	947	100.0%	INT
EXP33-C	89.5%	5214	96.3%	MEN
EXP34-C	91.8%	546	95.4%	MEN
EXP39-C	70.7%	116	83.1%	MEN
EXP46-C	82.5%	143	87.8%	MS
FIO30-C	86.5%	1065	95.1%	POS
FIO34-C	72.5%	1132	78.5%	PRE
FIO42-C	83.9%	933	93.2%	SIF
FIO46-C	100.0%	947	100.0%	VVI

Rule	Accuracy	# Alerts	AUROC
FIO47-C	86.4%	1070	95.4%
FLP32-C	100.0%	947	100.0%
FLP34-C	70.5%	3619	78.0%
INT30-C	63.7%	1365	66.4%
INT31-C	68.7%	5139	77.5%
INT32-C	69.9%	1599	75.7%
INT33-C	79.8%	228	86.3%
INT34-C	100.0%	947	100.0%
INT35-C	64.3%	622	72.2%
INT36-C	100.0%	967	100.0%
MEM30-C	94.5%	1461	99.3%
MEM31-C	83.9%	933	93.2%
MEM35-C	66.7%	2514	76.0%
MSC37-C	100.0%	947	100.0%
POS54-C	90.0%	239	94.5%
PRE31-C	97.8%	46	99.1%
STR31-C	94.0%	397	98.0%
WIN30-C	95.6%	1465	97.8%

<u>Major improvement:</u> 67 per-rule classifiers (and more coming!) vs. only 3 in FY16!

Model	Accuracy A	AUROC	
lightgbm	83.7%	93.8%	1
xgboost	82.4%	92.5%	
rf	78.6%	86.3%	
lasso	82.5%	92.5%	

Lasso per-CERT-rule classifiers (36)

Avg. accuracy	Count accuracy 95+%	Count accuracy 85-94.9%	Count accuracy 0-84.9%	Sin oth
85.8%	12	9	15	me
	99.2%	90.9%	72.1%	

Similar for other classifier methods

Lasso per-CWE-ID classifiers (31)

	Count	Count	Count	
Avg.	accuracy	accuracy	accuracy	Similar for
accuracy	95+%	85-94.9%	0-84.9%	other classifier
81.8%	7	10	14	methods
	98.4%	89.6%	67.9%	

Summary and Future

FY17 Line "Rapid Classifiers" built on the FY16 LENS "Prioritizing vulnerabilities".

- Developed widely useful general method to use test suites across taxonomies
- Developed large archive of "pre-audited" alerts
 - Overcame major challenge to classifier development
 - For CWEs and CERT rules
- Developed code infrastructure (extensible!)
- In-progress:
 - Classifier development and testing in process
 - Continue to gather data

New mappings (CWE/CERT rule): MITRE and CERT websites IEEE SecDev 2017 "Hands-on Tute

Publications:

- IEEE SecDev 2017 "Hands-on Tutorial: Alert Auditing with Lexicon & Rules"
- 2 SEI blogposts on classifier development
- Research paper in progress
- Enhanced SCALe audit tool for collaborator testing: distribute to collaborators soon
- FY18-19 plan: architecture for rapid deployment of classifiers in varied systems
- Goal: optimal automation of static alert auditing (and other code analysis and repair)

Contact Information

Presenter / Point(s) of Contact

Lori Flynn (Principal Investigator) Software Security Researcher

Email: lflynn@cert.org

Telephone: +1 412.268.7886

Contributors SEI Staff William Snavely David Svoboda Zach Kurtz

SEI Student Interns Lucas Bengtson (CMU) Charisse Haruta (CMU) Baptiste Vauthey (CMU) Michael Spece (Pitt) Christine Baek (CMU)